首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
地球物理   1篇
地质学   15篇
综合类   1篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2005年   3篇
  2001年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
The ionic and isotopic compositions (δD, δ18O, and 3H) of urban groundwaters have been monitored in Seoul to examine the water quality in relation to land-use. High tritium contents (6.1–12.0 TU) and the absence of spatial/seasonal change of O–H isotope data indicate that groundwaters are well mixed within aquifers with recently recharged waters of high contamination susceptibility. Statistical analyses show a spatial variation of major ions in relation to land-use type. The major ion concentrations tend to increase with anthropogenic contamination, due to the local pollutants recharge. The TDS concentration appears to be a useful contamination indicator, as it generally increases by the order of forested green zone (average 151 mg/l), agricultural area, residential area, traffic area, and industrialized area (average 585 mg/l). With the increased anthropogenic contamination, the groundwater chemistry changes from a Ca–HCO3 type toward a Ca–Cl(+NO3) type. The source and behavior of major ions are discussed and the hydrochemical backgrounds are proposed as the basis of a groundwater management plan.  相似文献   
2.
The Wolyu mine is one of the largest vein-type gold-silver-bearing epithermal systems in the Youngdong district and is the first gold-silver deposit in Korea found to contain significant germanium, in the form of argyrodite (Ag8GeS6). Mineralized veins (78.9 ± 1.2 Ma) crosscutting Late Cretaceous hostrock tuff and quartz porphyry (81.5 ± 1.8 Ma) consist of three stages of quartz and carbonates, the first of which contains pyrite, basemetal sulfides and Au-Ag-minerals. Stage I Au-Ag-Ge-mineralized veins show a systematic variation of mineral assemblage with time: (1) quartz + pyrite; (2) quartz + pyrite + sphalerite + electrum + argentite; (3) carbonate + quartz + sphalerite + electrum + argentite; (4) carbonate + native silver + argentite + Ag-sulfosalts + argyrodite + sphalerite. Calculated values of temperature and sulfur activity are: assemblage (1), 360-280°C and 10–7-10–10; (2), 280-210°C and 10–10-10–14; (3), 210-180°C and 10–14-10–16; (4), 180-155°C and 10–17-10–18. These data, the frequent association of gold with sulfides, and the abundance of pyrite in alteration zones indicate that decreasing sulfur activity and cooling were important in triggering gold deposition. Hydrogen and oxygen isotope compositions of ore fluids display a systematic variation with increasing time. Within the main Ag-Au-Ge mineralization, D and 18O values decrease with the transition from quartz to carbonate deposition (from -78 and –2.8% to –90 and –8.7%., respectively), indicating increasing involvement (mixing) of less evolved meteoric water which resulted in progressive cooling and dilution of ore fluids in the shallow ( 370–600 m) Wolyu epithermal system.  相似文献   
3.
Mesothermal gold mineralization at the Samdong mine (5.5–13.5 g/ton Au), Youngdong mining district, is situated in massive quartz veins up to 1.2 m wide which fill fault fractures within upper amphibolite to epidote-amphibolite facies, Precambrian-banded biotite gneiss. The veins are mineralogically simple, consisting of iron- and base-metal sulfides and electrum, and are associated with weak hydrothermal alteration zones (<0.5 m wide) characterized by silicification and sericitization. Fluid inclusion data and equilibrium thermodynamic interpretation of mineral assemblages indicate that the quartz veins were formed at temperatures between 425 and 190°C from relatively dilute aqueous fluids (4.5–13.8 wt. % equiv NaCl) containing variable amounts of CO2 and CH4. Evidence of fluid unmixing (CO2 effervescence) during the early vein formation indicates approximate pressures of 1.3–1.9 kbars, corresponding to minimum depths of 5–7 km under a purely lithostatic pressure regime. Gold deposition occurred mainly at temperatures between 345 and 240 °C, likely due to decreases in sulfur activity accompanying fluid unmixing. The 34S values of sulfide minerals (-3.0 to 5.3 ), and the measured and calculated O-H isotope compositions of ore fluids (18O = 5.7 to 7.6; = –74 to –80) indicate that mesothermal gold mineralization at the Samdong mine may have formed from dominantly magmatic hydrothermal fluids, possibly related to intrusion of the nearby ilmenite-series, Kimcheon Granite of Late Jurassic age.  相似文献   
4.
5.
Twenty profiles of vertical electric soundings (VES) were obtained in a riverside alluvium at the Buyeo area, South Korea, to examine the variations of subsurface geology and associated groundwater chemistry. The combination of the VES data with the borehole data provided useful information on subsurface hydrogeologic conditions. The vestige of an ancient river channel (e.g. oxbow lake) was identified on the resistivity profiles by the lateral continuation of a near-surface perched aquifer parallel to the river. Such a perched aquifer is typically developed in the area with a clay-rich silty surface alluvium which prohibits the infiltration of oxygen. Therefore, groundwater below the oxbow lake shows a very low nitrate concentration and Eh values under the strong anoxic condition. The distribution of water resistivity is correlated with that of measured total dissolved solids concentration in groundwater, while the earth resistivity of the aquifer shows a significant spatial variation. It is interpreted that the earth resistivity of the aquifer is mainly controlled by the soil type rather than by the water chemistry in the study area.  相似文献   
6.
Volatile organic compounds (VOCs) detected in stormwater were compared with VOCs present in emission sources, air, groundwater, and influent to sewage treatment plants in Seoul to understand their fate and transport in the urban hydrological system. Stormwater is a carrier of non-point source pollutants and contains VOCs from land surfaces and air. Samples of stormwater and influent to sewage treatment plants were collected and analyzed for 61 VOCs, while the VOCs in emission sources, air and groundwater were investigated through literature reviews for comparison. The results showed that the most frequently detected VOCs in stormwater were similar to those in air. However, the atmospheric concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tertiary-butyl ether (MTBE) were too low to explain their frequent detection and high concentrations in stormwater. As a result, land surfaces seem to be a primary source of these VOCs in stormwater. Comparison of the VOCs in stormwater and groundwater showed that toluene and MTBE were frequently detected in both media, but more often and at higher concentrations in stormwater. This finding indicates that stormwater recharge is a source of toluene and MTBE in groundwater. Regarding groundwater, land surfaces seem to be a primary source of toluene, while urban air is the primary source in the case of MTBE. Specifically, the MTBE values in air were sufficiently high to explain its levels in groundwater, which had continually increased and remained low afterward. Furthermore, the high ratios of TEX (toluene, ethylbenzene, and xylenes) to benzene and MTBE in stormwater indicated that TEX had additional sources other than vehicles, most likely hydrocarbon solvents. These solvents seem to be a primary source of TEX and other frequently detected VOCs in stormwater. However, trichloroethylene (TCE), tetrachloroethylene (PCE) and their dechlorination intermediates were far more frequently detected and at higher concentrations in groundwater than in stormwater. Additionally, their concentrations frequently exceeded the water-quality criteria. It seems that halogenated solvents had produced contamination plumes of these chlorinated VOCs in the Seoul aquifer. Based on VOCs detected in Seoul, stormwater was mixed with groundwater in combined sewers and flowed into sewage treatment plants. The results imply that organic solvents should be handled with extreme care to protect groundwater quality.  相似文献   
7.
Arsenic(V), as the arsenate (AsO4 3?) ion and its conjugate acids, has a strong affinity on Fe, Mn, and Al (oxyhydr)oxides and clay minerals. Removal of arsenate from aqueous solution by poorly crystalline ferrihydrite (hydrous ferric oxide) via a combination of macroscopic (equilibria and kinetics of sorption) and X-ray absorption spectroscopic studies was investigated. The removal of arsenate significantly decreased with increasing pH and sorption maxima of approximately 1.994 mmol/g (0.192 molAs/molFe) were achieved at pH 2.0. The Langmuir isotherm is most appropriate for arsenate sorption over the wide range of pH, indicating that arsenate sorption preferentially takes place at relatively homogenous and monolayer sites rather than heterogeneous and multilayer surfaces. The kinetic study demonstrated that arsenate sorption onto 2-line ferrihydrite is considerably fast, and sorption equilibrium was achieved within the reaction time of 2 h. X-ray absorption near-edge structure spectroscopy indicates no change in oxidation state of arsenate following interaction with the ferrihydrite surfaces. Extended X-ray absorption fine structure spectroscopy supports the efficient removal of arsenate by the 2-line ferrihydrite through the formation of highly stable inner-sphere surface complexes, such as bidentate binuclear corner-sharing (2C) and bidentate mononuclear edge-sharing (2E) complexes.  相似文献   
8.
Environmental Earth Sciences - Hydrogeochemistry data collected from three multi-level monitoring wells in a sandy alluvial aquifer located in the Keum River watershed, South Korea, are used in...  相似文献   
9.
We investigated the source of heavy metals in soils at a site in South Korea, where a ground transportation of zinc-concentrates (ZnS, sphalerite) occurs daily. Seventy soil samples were collected at the site and analyzed for residual concentrations of heavy metals, as well as their chemical and mineralogical properties. Enrichment factor was calculated based on local geochemical background level of metals in soils and confirmed the contamination of soils in the area by an anthropogenic source. The concentration data were also subjected to a Pearson correlation analysis to determine the possible influences of anthropogenic sources and identify the primary source. A slight negative correlation between heavy metals and Al, and a weak correlation between heavy metals and Fe implied that the heavy metals originated from anthropogenic inputs rather than a geogenic source. A strong positive linear correlation between Zn and other heavy metals (i.e., As, Cd, Cu, Pb, r ≥ 0.96, p ≤ 0.001) suggested the influence of a single anthropogenic source of zinc-concentrates containing all of these heavy metals. Zinc-concentrate oxidation and leaching experiments, which mimicked physical and chemical weathering in the environment, indicated that zinc-concentrate could be transformed to zinc oxides and release Cd and Pb upon precipitation. The findings in this study provide an insight into the fate of the Zn that the original form of zinc-concentrate would not remain in the soil after long-term weathering, which should be considered when source of heavy metals is identified.  相似文献   
10.
To investigate the urban groundwater contamination by eight trace metals and 69 volatile organic compounds (VOCs) in relation to land use in Seoul, a total of 57 groundwater samples collected from wells were examined using a non-parametric statistical analysis. Land use was classified into five categories: less-developed, residential, agricultural, traffic, and industrial. A comparison of analyzed data with US EPA and Korean standards for drinking water showed that some metals and VOCs exceeded the standards in a few localities, such as Fe (N=5), Mn (N=6), Cu (N=1), TCE (N=6), PCE (N=8), 1,2-DCA (N=1), and 1,2-dichloropropane (N=1). Among the 69 investigated VOCs, 19 compounds such as some gasoline-related compounds (e.g., toluene) and chlorinated compounds (e.g., chloroform, PCE, TCE) were detected in groundwater. Non-parametric statistical analysis showed that the concentrations of most trace metals (Fe, Mn, As, Cr, Pb, Cd) and some VOCs (especially, TCE, PCE, chloroform; toluene, carbon tetrachloride, bromodichloromethane, CFC113) are significantly higher in the industrial, residential, and traffic areas (P<0.05), indicating that anthropogenic contamination of urban groundwater by those chemicals is growing. Those chemicals can be used as effective indicators of anthropogenic contamination of groundwater in urban areas and therefore a special attention is warranted for a safe water supply in those areas. The results of this study suggest that urban groundwater quality in urban areas is closely related with land use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号