首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   3篇
  2011年   1篇
  2009年   2篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
This study is an attempt to quantify the geochemical processes and the timescale of seawater intrusion into a coastal aquifer from changes in the major ionic composition of the water and the natural distribution of the cosmogenic isotopes 14C and 3H. For that purpose, we sampled saline and brackish groundwaters from the Israeli coastal aquifer. A multilayer sampler (MLS) was used to obtain very high resolution (10 cm) profiles across the fresh-saline water interface (FSI).The chemical and stable isotope data revealed three distinct water types (end members) that are located in different zones on the route to the coastal aquifer: (1) slightly modified Mediterranean seawater (SWS); (2) slightly diluted (with up to 20% fresh groundwater) saline groundwater (SDS); and (3) fresh groundwater (FGW).The SWS samples generally show an excess of total alkalinity and total dissolved inorganic carbon (DIC), and a depletion of 13CDIC and 14CDIC with respect to normal seawater indicating that anaerobic oxidation of organic matter is the first diagenetic reaction that affects seawater during its penetration into the bottom sediments. SDS waters appear when SWS is slightly diluted, gain Ca2+ and Sr2+, and is depleted in K+, suggesting that the main processes that transform SWS into SDS are slight dilution with fresh groundwater and cation exchange. At the fresh-saline water interface, SDS generally shows conservative mixing with FGW.Inspection of chemical data from coastal aquifers around the world indicates that intensive ion exchange in slightly diluted saline groundwater is a globally important phenomenon of seawater intrusion. Most of our saline groundwater samples contain substantial amounts of 3H suggesting that penetration of Mediterranean seawater and its inland travel to a distance of 50-100 m onshore occurred 15-30 yr ago. This is supported by the 14CDIC mass balance that explains the relatively low 14CDIC activities in the SDS as influenced by diagenesis and not by simple radioactive decay.  相似文献   
2.
The eastern Mediterranean is naturally highly oligotrophic, but urbanization along the Levant coast has led to raised organic and nutrient loads. This study tracks living foraminiferal assemblages at two sites near an activated sewage sludge outfall from 11/2003 to 5/2004. Oligotrophic site PL29 shows seasonal variations in O2, chlorophyll a, and organic carbon, and has an abundant, diverse benthic foraminiferal assemblage living at various in-sediment depths. At eutrophic site PL3, ∼16 years of sludge injection favor a depleted assemblage primarily of opportunist foraminifera. This site shows less seasonality, is subjected to organic matter overload, O2-stress, and periodic anoxia, foraminifera are less abundant and diverse, and live at shallower depths. The assemblages at both sites represent a common pool of species, with Ammonia tepida highly dominant. Benthic foraminifera were therefore found to be sensitive to trophic trajectories, respond on sub-seasonal time-scales, and track injection and dispersal of organic loads on the shelf.  相似文献   
3.
4.
Radioactive isotopes were used to estimate the rate of seawater intrusion into the coastal aquifer of Israel, the connection between the different sub-aquifers, and the connection between the sub-aquifers and the sea. This was done by dating both fresh and saline groundwaters from the vicinity of the shoreline, which were analyzed for their 14C and tritium content together with their chemical and stable isotope composition. The results indicate that the distinct sub-aquifers differ in their water chemistry and age. The saline groundwater in the lower sub-aquifers is older than ca. 10,000 years, as evidenced by the absence of tritium and low 14C activity (<12 PMC). On the other hand, saline groundwaters in the upper sub-aquifers contain tritium and are thus younger than 50 years, indicating recent intrusion of seawater. The ages of the saline groundwaters become younger upward from the lower sub-aquifers to the upper ones, reflecting the sea-level rise since the last glacial period. The older ages also imply slow groundwater flow in the lower sub-aquifers. The fresh groundwaters in most cases in the lower sub-aquifers were found to be older than ca. 10,000 years and this implies that the flow to the sea is blocked or restricted.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号