首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
地球物理   1篇
地质学   10篇
天文学   4篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2004年   1篇
排序方式: 共有15条查询结果,搜索用时 843 毫秒
1.
The effect of variations in the rate of ionization of neutral chemical species by cosmic rays, ζ, on the abundances of some observed molecules in the dense cores of dark molecular clouds is studied. Changes in molecular abundances accompanying an increased (decreased) ionization rate have a single origin: the acceleration (deceleration) of processes that are affected directly or indirectlybychemical reactions with charged species. In addition to affecting the gas-phase chemistry, an increased cosmic-ray flux leads to the more efficient destruction of dust-grain mantles and also accelerates the freezing of some components onto dust. In particular, in a model with an increased ζ, the destruction of the volatile N2 molecule by ionized helium leads to the rapid accumulation of nitrogen atoms in dust-phase ammonia, which has a higher desorption energythan N2. As a result, the gas-phase abundance of NH3 and N2H+ decreases significantly. This mechanism can explain the unusual chemical structures of some dense globules, such as B68, where surprisingly low abundances of nitrogen-bearing molecules are observed together with a central drop in the NH3 and N2H+ column densities. Observations of clouds in HCN and HNC lines can discriminate between the two possible origins of the reduced NH3 and N2H+ abundances: an increased cosmic-ray flux or N2 freezing due to the higher desorption energy of this molecule.  相似文献   
2.
We study details of the UV radiation transfer in a protoplanetary disk, paying attention to the influence of dust growth and sedimentation on the disk density and temperature. Also, we show how the dust evolution affects photoreaction rates of key molecules, like CN and CS.  相似文献   
3.
Astronomy Reports - Several errors were found in this paper, which however did not influence its main conclusions. In Table 2 of Section 2, the references for the data in columns (6)–(9) and...  相似文献   
4.
We present results of a survey of 14 star-forming regions from the Perseus spiral armin CS (2–1) and 13CO (1–0) lines with the Onsala Space Observatory 20 m telescope. Maps of 10 sources in both lines are obtained. For the remaining sources a map in just one line or a single-point spectrum is obtained. On the basis of newly obtained and published observational data we consider the relation between velocities of the “quasi-thermal” CS (2–1) line and 6.7 GHz methanol maser line in 24 high-mass star-forming regions in the Perseus arm. We show that, surprisingly, velocity ranges of 6.7 GHz methanol maser emission are predominantly red-shifted with respect to corresponding CS (2–1) line velocity ranges in the Perseus arm. We suggest that the predominance of the “red-shifted masers” in the Perseus arm could be related to the alignment of gas flows caused by the large-scalemotions in the Galaxy. Large-scale galactic shock related to the spiral structure is supposed to affect the local kinematics of the star-forming regions. Part of the Perseus arm, between galactic longitudes from 85° to 124° , does not contain blue-shifted masers at all. Radial velocities of the sources are the greatest in this particular part of the arm, so the velocity difference is clearly pronounced. 13CO (1–0) and CS (2–1) velocity maps of G183.35-0.58 show gas velocity difference between the center and the periphery of the molecular clump up to 1.2 km s?1. Similar situation is likely to occur in G85.40-0.00. This can correspond to the case when the large-scale shock wave entrains the outer parts of a molecular clump in motion while the dense central clump is less affected by the shock.  相似文献   
5.
A self-consistent model for the chemical-dynamical evolution of a region of ionized hydrogen around a massive young star and of the surrounding molecular gas is presented. The model includes all main chemical and physical processes, namely the photoionization of atomic hydrogen, photodissociation of molecular hydrogen and other molecules, and the evaporation of molecules from the mantles of dust particles. Heating and cooling processes are taken into account in the temperature calculations, including cooling in molecular and atomic lines. The hydrodynamical equations were solved using the Zeus2D hydrodynamical software package. This model is used to analyze the expansion of a region of ionized hydrogen around massive stars (effective temperature of 30 000 and 40 000 K) in a medium with various initial density distributions. The competition between evaporation from dust mantles and the photodissociation of molecules results in the formation of a transition layer between the hot HII region and cool quiescent medium, characterized by high abundances of molecules in the gas phase. The thickness of the transition layer is different for different molecules. Since there is a velocity gradient along the transition layer, and the maxima in the distributions of different molecules are at different distances from the star, observations of molecular emission lines should reveal distinction in shifts of lines of different molecules relative to the velocity of the quiescent gas. Such shifts have indeed been detected during molecular observations of the region of ionized hydrogen Sh2-235. For an initial gas density of 103 cm?3, the increase in the abundances of H2O and H2CO in the transition layer after desorption from dust occurs gradually rather than in a jump-like fashion; therefore, the concept of a “evaporation front” can be used only formally. In addition, the distances between the evaporation fronts for different molecules are significant. At higher initial gas densities (104 cm?3), sharp evaporation fronts are formed for the different molecules, which are close to each other and to the shock front. In this case, it is possible to speak of a single evaporation front for CO, H2O, and H2CO.  相似文献   
6.
This study is the first to show, using data from the eruption of Koryakskii Volcano, Kamchatka that began in December 2008 and continued through 2009 that the water in permanent and temporary streams that start on the slopes of the volcanic cone and in temporary lakes when contaminated with fresh tephra is a specific hazard factor related to long-continued hydrothermal-phreatic eruptions on that volcano. This water is characterized by increased acidity (pH 4.1–4.35) and large amounts (up to 50–100 cm3/liter) of solid suspension and is unfit for drinking and irrigation. When combined with tephra, it probably produced mass destruction of a number of animals who lived on the slopes and at the base of the volcano. The water contaminated with tephra is an important component of the atmospheric mud flows occurring on Koryakskii Volcano; for several future years it will be a potential source for enhancing the acidity of ground water in the volcanic edifice.  相似文献   
7.
The generation of infrared (IR) radiation and the observed IR-intensity distribution at wavelengths of 8, 24, and 100 µm in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using a self-consistent chemical-dynamical model in which three dust populations are included—large silicate grains, small graphite grains, and polycyclic, aromatic hydrocarbons (PAHs). A radiative transfer model taking into account stochastic heating of small grains and macromolecules is used to model the IR spectral energy distribution. The computational results are compared with Spitzer and Herschel observations of the RCW 120 nebula. The contributions of collisions with gas particles and the radiation field of the star to stochastic heating of small grains are investigated. It is shown that a model with a homogeneous PAH content cannot reproduce the ring-like IR-intensity distribution at 8 µm. A model in which PAHs are destroyed by ultraviolet radiation of the star, generating region HII, provides a means to explain this intensity distribution. This model is in agreement with observations for realistic characteristic destruction times for the PAHs.  相似文献   
8.
Astronomy Reports - We present the results of the ethynyl (C2H) emission line observations towards the S255 and S257 HII regions and the molecular cloud between them. Radial profiles of line...  相似文献   
9.
The 20-cm radio continuum fluxes of 91 HII regions in a previously compiled catalog have been determined. The spectral types of the ionizing stars in 42 regions with known distances are estimated. These spectral types range from B0.5 to O7, corresponding to effective temperatures of 29 000–37 000 K. The dependences of the infrared (IR) fluxes at 8, 24, and 160 μm on the 20-cm flux are considered. The IR fluxes are used as a diagnostic of heating of the matter, and the radio fluxes as measurements of the number of ionizing photons. It is established that the IR fluxes grow approximately linearly with the radio flux. This growth of the IR fluxes probably indicates a growth of the mass of heated material in the envelope surrounding the HII region with increasing effective temperature of the star.  相似文献   
10.
We present a picture of star formation around the H  ii region Sh2-235 (S235) based upon data on the spatial distribution of young stellar clusters and the distribution and kinematics of molecular gas around S235. We observed 13CO (1–0) and CS (2–1) emission toward S235 with the Onsala Space Observatory 20-m telescope and analysed the star density distribution with archival data from the Two Micron All-Sky Survey (2MASS). Dense molecular gas forms a shell-like structure at the southeastern part of S235. The young clusters found with 2MASS data are embedded in this shell. The positional relationship of the clusters, the molecular shell and the H  ii region indicates that expansion of S235 is responsible for the formation of the clusters. The gas distribution in the S235 molecular complex is clumpy, which hampers interpretation exclusively on the basis of the morphology of the star-forming region. We use data on kinematics of molecular gas to support the hypothesis of induced star formation, and distinguish three basic types of molecular gas components. The first type is primordial undisturbed gas of the giant molecular cloud, the second type is gas entrained in motion by expansion of the H  ii region (this is where the embedded clusters were formed) and the third type is a fast-moving gas, which might have been accelerated by winds from the newly formed clusters. The clumpy distribution of molecular gas and its kinematics around the H  ii region implies that the picture of triggered star formation around S235 can be a mixture of at least two possibilities: the 'collect-and-collapse' scenario and the compression of pre-existing dense clumps by the shock wave.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号