首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
地球物理   12篇
地质学   17篇
自然地理   6篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1993年   1篇
  1990年   1篇
  1986年   2篇
  1985年   1篇
  1981年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有35条查询结果,搜索用时 0 毫秒
1.
2.
One of the major tectonic problems in Europe concerns the southwest margin of the East European Platform in the region of the so-called Polish-Danish trough. In general, this margin is assumed to be the Tornquist-Teisseyre (T-T) Line, running approximately from northwest to southeast in this part of Europe. Determination of deep crustal structure of the contact zone between the Precambrian Platform and the Palaeozoic Platform was the main aim of the deep seismic sounding (DSS) programme in Poland in 1965–1982.Deep seismic soundings of the Earth's crust have been made in the T-T Line zone along nine profiles with a total length of about 2600 km. The results of deep seismic soundings have shown that the crust in the marginal zone of the East European Platform has highly anomalous properties. The width of this zone ranges from 50 km in northwest Poland to about 90 km in southeast Poland. The crustal thickness of the Palaeozoic Platform in Poland is 30–35 km, and of the Precambrian Platform 42–47 km, while in the T-T tectonic zone it varies from 50 to 55 km. Above the Moho boundary, in the T-T zone, at a depth of 40–45 km, there is a seismic discontinuity with P-wave velocities of 7.5–7.7 km/s. Boundary velocities, mean velocities and stratification of the Earth's crust vary distinctly along the T-T zone. There are also observed high gravimetric and magnetic anomalies in the T-T zone. The T-T tectonic zone determined in this manner is a deep tectonic trough with rift properties.The deep fractures delineating the T-T tectonic zone are of fundamental importance for the localization of the plate edge of the Precambrian Platform of eastern Europe. In the light of DSS results, the northeastern margin of the T-T tectonic zone is a former plate boundary of the East European Platform.  相似文献   
3.
This paper presents the results of seismic measurements along the Baltic Sea-Black Sea profile. The basic wave groups recorded up to distances of 900 km are characterized. The main elements of a lithospheric model of the southwestern part of the Precambrian East European Platform are given. The thickness of the Earth's crust is about 45 km and the mean velocity of the crust is about 6.3 km/s. At a depth of 65 km, the velocity increases from 8.2 to 8.5 km/s. In the depth interval 110 to 135 km, there is a series of layers with low and high velocities. The lower boundary of the lithosphere is probably defined by the boundary at a depth of 110 km.  相似文献   
4.
Corrigenda     

Corrigendum

Corrigenda  相似文献   
5.
Summary The paper deals with the results of DSS measurements along international profile VII, carried out by Czechoslovak and Polish geophysicists in 1970 – 71. The profile situation is shown in Fig. 1. By 1971 part of the profile in the region of the Bohemian Massif between points 1 and 3 and in Poland between points 5 and 7 had been surveyed (Fig. 2). The seismograms were used to construct the travel-time curves of the fundamental types of waves PK, PM, Pn (Fig. 4). The mean velocities were computed from the travel-time curves of the reflected waves (PM and PK) and the refracted waves (Pg). Isolines of the mean velocities could be constructed for the region of the Bohemian Massif (Fig. 6). The velocity data found were used for the depth interpretation of the travel-time curves of the principal types of waves and to construct a seismic section (Fig. 8). In the region of the Pre-Sudeten block the thickness of the crust was found to be 34–37 km, and in the Sudeten it increased to 40 km. Towards the south the thickness of the crust gradually reduces to 30 km in the system of the Luice faults. In the Bohemian Cretaceous the thickness of the crust is about 30 km. Further to the south, in the region of the Moldanubicum, the thickness of the Earth's crust increases rapidly, and at the southern border of the Central Bohemian pluton it reaches values of about 42 km.  相似文献   
6.
7.
The new procedure of earthquake hazard evaluation developed by Kijko and Sellevoll is tested and applied for the border region of Czechoslovakia and Poland. The new method differs from the conventional approach. It incorporates the uncertainty of earthquake magnitudes, and accepts mixed data containing only large historical events and recent, complete catalogues. Seismic hazard has been calculated for nine regions determined in the border area. In the investigated area, data of historical catalogues are uncertain or, in many cases, the epicentral intensities are unknown. Thus, a number of assumptions have to be adopted in data preparation of catalogues since the year 1200. The calculated values of parameters b in the Gutenberg-Richter frequency-intensity relation as well as the return periods, seem to be reasonable and are generally confirmed by the results obtained from catalogues for the last 80–130 years.  相似文献   
8.
The Polish Geophysical Expedition to West Antarctica in the summer of 1979–1980 was organized by the Institute of Geophysics of the Polish Academy of Sciences. The purpose of the expedition was to carry out studies of deep structures of the Earth's crust by reflection, refraction and deep seismic sounding methods. Special attention was paid to tectonically active zones and to the contact zones between the blocks of the Earth's crust and the lithospheric plates. Geophysical measurements were carried out in the area extending between 61° and 65°S and between 56° and 66°W. The measurements covered the southern Shetlands, the Antarctic Peninsula, the Bransfield Strait, the Drake Passage, the Palmer Archipelago, the Gerlache Strait and the Bismarck Strait towards the southern Pacific.Deep seismic soundings were made along profiles with a total length of about 2000 km. Seismic reflection measurements were made along profiles about 1100 km long. A detailed analysis of the seismic wave field shows that the structure of the Earth's crust in this part of West Antarctica is very complex. Numerous deep fractures divide the Earth's crust into blocks of different physical properties. The thickness of the Earth's crust changes from 32 km in the region of the South Shetland Islands to 40–45 km in the region of the Antarctic Peninsula. A preliminary geodynamical model of this part of West Antarctica is presented.  相似文献   
9.
The first detailed deep seismic refraction study in the Bransfield Strait, West Antarctica, using sensitive OBSs (ocean bottom seismographs) was carried out successfully during the Antarctic summer of 1990/1991. The experiment focused on the deep crustal structure beneath the axis of the Bransfield Rift. Seismic profile DSS-20 was located exactly in the Bransfield Trough, which is suspected to be a young rift system. Along the profile, five OBSs were deployed at spacings of 50-70 km. 51 shots were fired along the 310 km profile. This paper gives the first presentation of the results. A detailed model of the crustal structure was obtained by modelling the observed traveltimes and amplitudes using a 2-D ray-tracing technique. The uppermost (sedimentary?) cover, with velocities of 2.0-5.5 km s−1, reaches a depth of up to 8 km. Below this, a complex with velocities of 6.4-6.8 km s−1 is observed. The presence of a high-velocity body, with V p= 7.3-7.7 km s−1, was detected in the 14-32 km depth range in the central part of the profile. These inhomogeneities can be interpreted as a stage of back-arc spreading and stretching of the continental crust, coinciding with the Deception-Bridgeman volcanic line. Velocities of 8.1 km s−1, characteristic of the Moho, are observed along the profile at a depth of 30-32 km.  相似文献   
10.
For studying the structure of the lithosphere in southern Ukraine, wide-angle seismic studies that recorded the reflected and refracted waves were carried out under the DOBRE-4 project. The field works were conducted in October 2009. Thirteen chemical shot points spaced 35–50 km apart from each other were implemented with a charge weight varying from 600 to 1000 kg. Overall 230 recording stations with an interval of 2.5 km between them were used. The high quality of the obtained data allowed us to model the velocity section along the profile for P- and S-waves. Seismic modeling was carried out by two methods. Initially, trial-and-error ray tracing using the arrival times of the main reflected and refracted P- and S-phases was conducted. Next, the amplitudes of the recorded phases were analyzed by the finite-difference full waveform method. The resulting velocity model demonstrates a fairly homogeneous structure from the middle to lower crust both in the vertical and horizontal directions. A drastically different situation is observed in the upper crust, where the V p velocities decrease upwards along the section from 6.35 km/s at a depth of 15–20 km to 5.9–5.8 km/s on the surface of the crystalline basement; in the Neoproterozoic and Paleozoic deposits, it diminishes from 5.15 to 3.80 km/s, and in the Mesozoic layers, it decreases from 2.70 to 2.30 km/s. The subcrustal V p gradually increases downwards from 6.50 to 6.7–6.8 km/s at the crustal base, which complicates the problem of separating the middle and lower crust. The V p velocities above 6.80 km/s have not been revealed even in the lowermost part of the crust, in contrast to the similar profiles in the East European Platform. The Moho is clearly delineated by the velocity contrast of 1.3–1.7 km/s. The alternating pattern of the changes in the Moho depths corresponding to Moho undulations with a wavelength of about 150 km and the amplitude reaching 8 to 17 km is a peculiarity of the velocity model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号