首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
大气科学   1篇
地球物理   3篇
地质学   8篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
排序方式: 共有12条查询结果,搜索用时 984 毫秒
1.
2.
This study examines the electricity in two thunderstorms, typical for their respective locales (the Great Plains and the New Mexico mountains), by modeling them as a set of steady-state horizontal layers of external currents. The model electric sources, corresponding to the charge separation processes in the thundercloud, are embedded in an exponential conducting atmosphere. The source parameters are determined by fitting the model electric field to measured profiles. The resulting currents to the ionosphere (i.e., the Wilson current) from the two storms are 0.53 A and 0.16 A, while the calculated electrical energies of the storms are 2.3 × 1010 J and 2.8 × 109 J, respectively. The more vigorous storm is estimated to transfer 16 000 C in the global circuit during 8.5 h of its lifetime, while the weaker mountain storm transferred about 1200 C in its entire 2-h lifetime. Removal of the screening charge layer from above the updraft region in one modeled storm leads to only a small increase in the net Wilson current of less than 3%, while it provides a substantial local disturbance of the electric field. Overall, the model findings indicate that differences in the Wilson currents and electrical energies of the two storms result from differences in their internal dynamical and electrical structures as well as their geographical locations.  相似文献   
3.
Davydenko  D. B. 《Geotectonics》2020,54(5):665-678
Geotectonics - The paper presents the results of the study of objects spatially related to extremely high hydrocarbon (HC) emissions identified in the North Caspian Sea. The analysis of variable...  相似文献   
4.
Based on the materials of regional seismic surveys, general structural maps of the basement roof and the carbonate stratum, as well as a map of the carbonate formation isopachytes, are plotted. Using statistical methods, the trend-component for the basement roof is determined and the map of isolines characterizing the II-order structural-tectonic elements is obtained.  相似文献   
5.
In the differentially normalized method of electromagnetic sounding (DNME), the transmitter and receiver are grounded electrical circuits. The conduction and polarization properties of a section are studied by measuring the electrical potential difference (ΔU(t)) and the second potential difference (Δ2U(t)); the latter characterizes the spatial inhomogeneity of the electromagnetic field. Measurements of Δ2U(t) are strongly influenced by three-dimensional inhomogeneities within the receiver spread. To reduce this effect, measurements are made in two positions (left and right) of the transmitter circuit relative to receiver with subsequent averaging of the measured data. Often in field studies, the transmitter and receiver circuits are at an angle to each other, and the use of two transmitters in measurements leads to the need to determine a generalized transmitter for one-dimensional forward numerical modeling of field data.The effect of the off-axis (diagonal) position of the transmitter and receiver circuits on the data of electromagnetic pulse sounding and their inversion for a one-dimensional polarizable conducting medium have been studied in real and numerical experiments. In modeling, the effect of induced polarization (IP) is taken into account by introducing the resistivity frequency dispersion (Cole-Cole equation). Validity of the calculation of the generalized transmitter is estimated for the solution of the one-dimensional forward problem with the inversion of field diagonal measurements. The effect of three-dimensional objects on the results of measurements using the above observation system is estimated by solving the 3D forward problem for a polarizable conducting medium.  相似文献   
6.
7.
Multiple scattering is usually ignored in migration algorithms, although it is a genuine part of the physical reflection response. When properly included, multiples can add to the illumination of the subsurface, although their crosstalk effects are removed. Therefore, we introduce full‐wavefield migration. It includes all multiples and transmission effects in deriving an image via an inversion approach. Since it tries to minimize the misfit between modeled and observed data, it may be considered a full waveform inversion process. However, full‐wavefield migration involves a forward modelling process that uses the estimated seismic image (i.e., the reflectivities) to generate the modelled full wavefield response, whereas a smooth migration velocity model can be used to describe the propagation effects. This separation of modelling in terms of scattering and propagation is not easily achievable when finite‐difference or finite‐element modelling is used. By this separation, a more linear inversion problem is obtained. Moreover, during the forward modelling, the wavefields are computed separately in the incident and scattered directions, which allows the implementation of various imaging conditions, such as imaging reflectors from below, and avoids low‐frequency image artefacts, such as typically observed during reverse‐time migration. The full wavefield modelling process also has the flexibility to image directly the total data (i.e., primaries and multiples together) or the primaries and the multiples separately. Based on various numerical data examples for the 2D and 3D cases, the advantages of this methodology are demonstrated.  相似文献   
8.
Although seismic sources typically consist of identical broadband units alone, no physical constraint dictates the use of only one kind of device. We propose an acquisition method that involves the simultaneous exploitation of multiple types of sources during seismic surveys. It is suggested to replace (or support) traditional broadband sources with several devices individually transmitting diverse and reduced frequency bands and covering together the entire temporal and spatial bandwidth of interest. Together, these devices represent a so‐called dispersed source array. As a consequence, the use of simpler sources becomes a practical proposition for seismic acquisition. In fact, the devices dedicated to the generation of the higher frequencies may be smaller and less powerful than the conventional sources, providing the acquisition system with increased operational flexibility and decreasing its environmental impact. Offshore, we can think of more manageable boats carrying air guns of different volumes or marine vibrators generating sweeps with different frequency ranges. On land, vibrator trucks of different sizes, specifically designed for the emission of particular frequency bands, are preferred. From a manufacturing point of view, such source units guarantee a more efficient acoustic energy transmission than today's complex broadband alternatives, relaxing the low‐ versus high‐frequency compromise. Furthermore, specific attention can be addressed to choose shot densities that are optimum for different devices according to their emitted bandwidth. In fact, since the sampling requirements depend on the maximum transmitted frequencies, the appropriate number of sources dedicated to the lower frequencies is relatively small, provided the signal‐to‐noise ratio requirements are met. Additionally, the method allows to rethink the way to address the ghost problem in marine seismic acquisition, permitting to tow different sources at different depths based on the devices' individual central frequencies. As a consequence, the destructive interference of the ghost notches, including the one at 0 Hz, is largely mitigated. Furthermore, blended acquisition (also known as simultaneous source acquisition) is part of the dispersed source array concept, improving the operational flexibility, cost efficiency, and signal‐to‐noise ratio. Based on theoretical considerations and numerical data examples, the advantages of this approach and its feasibility are demonstrated.  相似文献   
9.
10.
The areas of formation of source rocks and riftogenec areals are identified based on results of investigations. The concrete definition of zoning of oil and gas accumulation was carried out using the method of remote fluid indexation. The data obtained allow us to change the perception of oil and gas prospects of the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号