首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6925篇
  免费   663篇
  国内免费   241篇
测绘学   325篇
大气科学   680篇
地球物理   2395篇
地质学   3004篇
海洋学   346篇
天文学   493篇
综合类   216篇
自然地理   370篇
  2024年   5篇
  2023年   16篇
  2022年   62篇
  2021年   85篇
  2020年   74篇
  2019年   89篇
  2018年   582篇
  2017年   503篇
  2016年   421篇
  2015年   235篇
  2014年   300篇
  2013年   292篇
  2012年   740篇
  2011年   523篇
  2010年   182篇
  2009年   207篇
  2008年   179篇
  2007年   151篇
  2006年   182篇
  2005年   860篇
  2004年   894篇
  2003年   676篇
  2002年   198篇
  2001年   87篇
  2000年   59篇
  1999年   20篇
  1998年   19篇
  1997年   26篇
  1996年   13篇
  1995年   6篇
  1994年   9篇
  1993年   7篇
  1992年   8篇
  1991年   11篇
  1990年   12篇
  1989年   7篇
  1988年   7篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1981年   4篇
  1980年   4篇
  1978年   3篇
  1976年   4篇
  1975年   7篇
  1973年   3篇
  1965年   3篇
  1948年   2篇
排序方式: 共有7829条查询结果,搜索用时 12 毫秒
1.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
2.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
3.
4.
Karst aquifers represent important water resources in many parts of the world. Unfortunately, karst aquifers are characterised by high contamination risks. This paper presents a travel time based method for the estimation of karst groundwater vulnerability. It considers (1) physics-based lateral flow within the uppermost weathered zone (epikarst) in a limestone-dominated region and (2) high velocities of vertical infiltration at discrete infiltration points (e.g. sinkholes) or lines (e.g. dry valleys, faults). Consequently, the Transit Time Method honours the actual flow path within the unsaturated zone of a karst aquifer system. A test site in Northern Jordan was chosen for the demonstration of the assessment technique, i.e. the catchment area of the Qunayyah Spring north of the capital Amman. The results demonstrate that zones of highest vulnerability lie within valleys and nearby main fault zones. It also reveals that regions, categorised as protected areas by other methods due to thick unsaturated zones, contribute to a major degree to the total risk.  相似文献   
5.
Diel patterns in the chlorophyll a specific absorption coefficient of surface picoplankton, a*pico (γ) (m2·[mg chlorophyll a]−1), were studied at 7 stations under daily cycle of in situ light condition in the western subarctic Pacific and Japan Sea. All the data were normalized by dividing the anomaly with daily averaged a*pico (γ). Opposite diel patterns were observed for the normalized a*pico (443) and a*pico (675) with maximum toward dawn or dusk and minimum toward midday at 4 stations under low-irradiance (LI) conditions and vice versa at 3 stations under high-irradiance (HI) conditions. The absorption efficiency factors at red absorption peak, Q a (675), were determined by reconstruction with intracellular chlorophyll a concentration and cell diameter. The normalized Q a (675) also showed diel pattern with maximum toward midday and minimum toward dawn or dusk under LI. The diel pattern in a*pico (675) and Q a (675) were primarily caused by changes in intracellular chlorophyll a concentration due to photoadaptation under LI. The diel pattern in a*pico (443) was influenced by pigmentation, as recognized by blue to red ratio [a*pico (443)/a*pico (675)] under HI. This study proposed that the opposite diel pattern in a*pico (γ) might occur for a wide range of algal species. The results presented here have important consequences for the interpretation of diel variations in optical properties observed in the open ocean.  相似文献   
6.
The measurements of the vertical transport of CO2 were carried out over the Sea of Japan using the specially designed pier of Kyoto University on September 20 to 22, 2000. CO2 fluxes were measured by the eddy correlation and aerodynamic techniques. Both techniques showed comparable CO2 fluxes during sea breeze conditions: −0.001 to −0.08 mg m−2s−1 with the mean of −0.05 mg m−2s−1. This means that the measuring site satisfies the fetch requirement for meteorological observations under sea breeze conditions. Moreover, the eddy diffusivity coefficient used in the aerodynamic technique is found to be consistent with the coefficient used in the eddy correlation technique. The present result leads us to conclude that the aerodynamic technique may be applicable to underway CO2 flux measurements over the ocean and may be used in place of the bulk technique. The important point is the need to maintain a measuring accuracy of CO2 concentration difference of the order of 0.1 ppmv on the research vessels or the buoys.  相似文献   
7.
Total mass flux, size distribution of sediment particles and some chemical components such as total carbon (TC), total nitrogen (TN) and calcium carbonate (CaCO3) were monitored monthly using a multi-cup sediment traps at seven coral reef sites (6 reef flat and 1 reef slope) of the Marine Protected Areas around Ishigaki, Kohama, Kuroshima and Iriomote Islands in the southern Ryukyus, Japan from September 2000 to September 2001. The size distribution of trapped sediments revealed mostly uni-modal fine sand to mud in the reef flat and gravelly to coarse sand in the reef slope. The total mass flux ranged between 0.54 to 872 gm−2d−1, and showed a pronounced seasonality (high in summer-autumn and low in spring) at each site, which was consistent with the rainfall and typhoon regime. Exceptionally high values were observed on the reef slope (Iriomote) in February–March 2001 (1533 gm−2d−1) owing to a large amount of bottom sediment re-suspension. On the reef flat (Todoroki South and North; Ishigaki), values obtained in July–August 2001 (872 gm−2d−1) and August–September 2001 (800 gm− 2d−1) indicate the high terrestrial discharge from Todoroki River. Trapped sediment particles consist of CaCO3 (1.2–27.1%) and a non-carbonate fraction (98.8–72.9%), which contains total carbon (4.9–26%), carbonate carbon (CO2-C) (0.2–3.1%) and non-carbonate carbon (NC-C) (7.9–25.6%). Total nitrogen content was in the range 0.02–0.48%. TN is contained mainly in the carbonate fraction and NC-C may be contained in the non-carbonate fraction. The low TN/OC ratio of the trapped sediments suggests that they were mostly of terrestrial origin and that both fractions migrated. The high total mass flux derived from Todoroki River exceeded the threshold at which a lethal effect on coral community is caused. The results stress the importance of conducting seasonal studies of sedimentation over more than one year and at more than one location in south Japan coral reef ecosystems to gain an understanding of the processes controlling the total mass fluxes and their nutrients content, also to develop an awareness of how to prevent the damage of coral reef ecosystems and, if it does occur, to allow mitigation measures to be undertaken.  相似文献   
8.
The structural framework of the southern part of the Shackleton Fracture Zone has been investigated through the analysis of a 130-km-long multichannel seismic reflection profile acquired orthogonally to the fracture zone near 60° S. The Shackleton Fracture Zone is a 800-km-long, mostly rectilinear and pronounced bathymetric lineation joining the westernmost South Scotia Ridge to southern South America south of Cape Horn, separating the western Scotia Sea plate from the Antarctic plate. Conventional processing applied to the seismic data outlines the main structures of the Shackleton Fracture Zone, but only the use of enhanced techniques, such as accurate velocity analyses and pre-stack depth migration, provides a good definition of the acoustic basement and the architecture of the sedimentary sequences. In particular, a strong and mostly continuous reflector found at about 8.0 s two-way traveltime is very clear across the entire section and is interpreted as the Moho discontinuity. Data show a complex system of troughs developed along the eastern flank of the crustal ridge, containing tilted and rotated blocks, and the presence of a prominent listric normal fault developed within the oceanic crust. Positive flower structures developed within the oceanic basement indicate strike-slip tectonism and partial reactivation of pre-existing faults. Present-day tectonic activity is found mostly in correspondence to the relief, whereas fault-induced deformation is negligible across the entire trough system. This indicates that the E–W-directed stress regime present in the Drake Passage region is mainly dissipated along a narrow zone within the Shackleton Ridge axis. A reappraisal of all available magnetic anomaly identifications in the western Scotia Sea and in the former Phoenix plate, in conjunction with new magnetic profiles acquired to the east of the Shackleton Fracture Zone off the Tierra del Fuego continental margin, has allowed us to propose a simple reconstruction of Shackleton Fracture Zone development in the general context of the Drake Passage opening.  相似文献   
9.
Scaling analysis of deposition from turbidity currents   总被引:3,自引:0,他引:3  
Many oil-bearing sedimentary deposits are formed by the settling of particles from turbidity currents. Modeling sedimentary processes that form these turbidites enables the calculation of properties such as extent, depth, porosity and permeability of hydrocarbon-bearing reservoirs. This paper estimates the extent and thickness of turbidites from the initial conditions of the turbidity flow. This is achieved by the application of scaling analysis of the partial differential equations that govern the dynamics of and deposition from turbidity currents. We apply the results of scaling analysis to five modern submarine fans. The predicted and actual values of the dimensions of the fan deposits match well. We then compare the derived results against tabulated sizes of ancient turbidites. The comparisons are good as long as we correctly identify the flow regimes in which the deposition took place. The good agreements observed in the two cases show that the estimates obtained using scaling analysis can provide useful first-guess values for the dimensions of the deposits.  相似文献   
10.
Solid-phase microextraction (SPME) is a simple, sensitive and less destructive method for the determination of dimethylsulfide (DMS) in seawater. Combined with detection by gas chromatography-mass spectrometry (GC-MS), the method had sufficient sensitivity (minimum detectable concentration of DMS was 0.05 nM), and practical levels of reproducibility (relative standard deviation ≤7%) and linearity (r 2 > 0.995) over a wide concentration range (0.5 to 910 nM). The protocol developed was applied to a Sagami Bay water sample to determine concentrations of DMS and DMSP, and in situ DMSP-lyase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号