首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
大气科学   2篇
地球物理   6篇
地质学   16篇
海洋学   5篇
天文学   1篇
综合类   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2006年   5篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1978年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
We measured both mass-dependent isotope fractionation of δ88Sr (88Sr/86Sr) and radiogenic isotopic variation of Sr (87Sr/86Sr) for the Neoproterozoic Doushantuo Formation that deposited as a cap carbonate immediately above the Marinoan-related Nantuo Tillite. The δ88Sr and 87Sr/86Sr compositions showed three remarkable characteristics: (1) high radiogenic 87Sr/86Sr values and gradual decrease in the 87Sr/86Sr ratios, (2) anomalously low δ88Sr values at the lower part cap carbonate, and (3) a clear correlation between 87Sr/86Sr and δ88Sr values. These isotopic signatures can be explained by assuming an extreme greenhouse condition after the Marinoan glaciation. Surface seawater, mixed with a large amount of freshwater from continental crusts with high 87Sr/86Sr and lighter δ88Sr ratios, was formed during the extreme global warming after the glacial event. High atmospheric CO2 content caused sudden precipitation of cap carbonate from the surface seawater with high 87Sr/86Sr and lighter δ88Sr ratios. Subsequently, the mixing of the underlying seawater, with unradiogenic Sr isotope compositions and normal δ88Sr ratios, probably caused gradual decrease of the 87Sr/86Sr ratios of the seawater and deposition of carbonate with normal δ88Sr ratios. The combination of 87Sr/86Sr and δ88Sr isotope systematics gives us new insights on the surface evolution after the Snowball Earth.  相似文献   
2.
Abstract. The Batu Hijau porphyry Cu‐Au deposit, Sumbawa Island, Indonesia, is associated with a tonalitic intrusive complex. The temperature‐pressure condition of mineralization at the Batu Hijau deposit is discussed on the basis of fluid inclusion microthermometry. Then, the initial Cu‐Fe sulfide mineral assemblage is discussed. Bornite and chalcopyrite are major copper ore minerals associated with quartz veinlets. The quartz veinlets have been classified into ‘A’ veinlets associated with bornite, digenite, chalcocite and chalcopyrite, ‘B’ veinlets having chalcopyrite bornite along vuggy center‐line, rare ‘C’ chalcopyrite‐quartz veinlets, and late ‘D’ veinlets consisting of massive pyrite and quartz (Clode et al., 1999). Copper and gold mineralization is associated with abundant ‘A’ quartz veinlets. Abundant fluid inclusions are found in veinlet quartz consisting mainly of gas‐rich inclusions and polyphase inclusions throughout the veinlet types. The hydrothermal activity occurred in temperature‐pressure conditions of aqueous fluid immiscibility into hypersaline brine and dilute vapor. The halite dissolution (Tm[halite]) and liquid‐vapor homogenization (Th) temperatures of the polyphase inclusions in veinlet quartz range from 270 to 472d?C and from 280 to 454d?C, respectively. The estimated salinity ranges from 36 to 47 wt% (NaCl equiv.). The apparent pressures lower than 300 bars are estimated to have been along the liquid‐vapor‐halite curve for the fluid inclusions having the Th lower than the Tm that trapped the brine saturated with halite, or at slightly higher pressure relative to liquid‐vapor‐halite curve for the fluid inclusions having the Th higher than the Tm that trapped the brine unsaturated with halite. The actual temperature and pressure during the hydrothermal activity at the Batu Hijau deposit are estimated to have been around 300d?C and 50 bars. At such temperature‐pressure conditions, the principal and initial Cu‐Fe sulfide mineral assemblages are thought to be chalcopyrite + bornite solid solution (bnss) for the chalcopyrite‐bearing assemblage, and chalcocite‐digenite solid solution and bnss for the chalcopyrite‐free assemblage.  相似文献   
3.
A monthly mean climatology of the mixed layer depth (MLD) in the North Pacific has been produced by using Argo observations. The optimum method and parameter for evaluating the MLD from the Argo data are statistically determined. The MLD and its properties from each density profile were calculated with the method and parameter. The monthly mean climatology of the MLD is computed on a 2° × 2° grid with more than 30 profiles for each grid. Two bands of deep mixed layer with more than 200 m depth are found to the north and south of the Kuroshio Extension in the winter climatology, which cannot be reproduced in some previous climatologies. Early shoaling of the winter mixed layer between 20–30°N, which has been pointed out by previous studies, is also well recognized. A notable feature suggested by our climatology is that the deepest mixed layer tends to occur about one month before the mixed layer density peaks in the middle latitudes, especially in the western region, while they tend to coincide with each other in higher latitudes.  相似文献   
4.
The objective of this paper is to propose an FFT technique symmetrical for time and frequency, in which the symmetrization is done by introducing generating functions. By the symmetrical treatment, it becomes possible to derive several complementary relations in the time and frequency domains. Based on the idea of the symmetrical FFT technique, the phase problem of seismic waves is discussed not only in the frequency domain but also in the time domain. Furthermore, the deconvolution technique to evaluate the minimum-phase-shift and all-pass functions of seismic waves, which is not discussed sufficiently in earthquake engineering, is developed in the two domains. Numerical examples to present these basic ideas are also illustrated in the symmetrical framework.  相似文献   
5.
Unicellular gametophytes ofUndaria pinnatifida (Harv.) Sur. were isolated in Qingdao, P. R. China in April 1993 and in Tokushima, southern Japan in March 1995. Different intraspecific crossings by using unicellular male and female gametophytes were successfully undertaken in Sept. of 1995 in Qingdao. Sporophytes were transplanted to two different locations for open sea cultivation. One was at Zhanqiao (ZQ) Bay where the water current was slower than that of another location—Taipingjiao(TPJ). A total of 218 adult sporophytes were harvested on January 12 and 18 from TPJ and ZQ respectively. For eacn combination, 10 sporophytes were cultivated. Analysis of the morphological characteristics of adult sporophytes indicated that the longest length between two bases of the serration of pinnate blades (W2) is a morphological characteristic that can be transferred from the parent plant to the next generations regardless of environmental variations. There was evidence that W2 was apparently determined by sex-linked factors, i.e., by male parental gametophyte. Sporophytes from certain crossing combinations showed more vigorous growth than those from other crossing combinations. It is therefore possible to select gametophyte strains which can be used as parental gametophytes for the seedling production of sporophytes with more vigorous growth within shorter cultivation period. The morphology of hybrids from a Qingdao strain and a Tokushima cultivated strain resembled that of both parental plants in frond features (wrinkled or smooth) and W2. Sporophyll formation also varied with strains. The fact that adult sporophytes resulting from the same crossing combinations have identical morphological characteristics under the same environmental conditions indicates the possibility of a new way to select strains which are expected to be ideal for commerical production by purposely selecting, propagating, and seeding unicellular gametophytes for sporeling production through freeliving techniques of gametophytes. Project 39400102 supported by NSFC, also supported by National Climbing Plan B (PD-B642); and Bioengineering Center, SSTC.  相似文献   
6.
Anomalous water level changes were observed at two wells associated with seismic swarm activity off Izu Peninsula on March, 1997. These are coseismic water level drops followed by gradual postseismic water level rise at the time of large earthquakes during the swarm activity. The post-seismic water level rises, which can be fitted by an exponential function with a time constant of about six hours, are explained in terms of the horizontal pressure diffusion due to the pressure gradient in the aquifer induced by the coseismic static strain.  相似文献   
7.
Simulation of large deformation and post‐failure of geomaterial in the framework of smoothed particle hydrodynamics (SPH) are presented in this study. The Drucker–Prager model with associated and non‐associated plastic flow rules is implemented into the SPH code to describe elastic–plastic soil behavior. In contrast to previous work on SPH for solids, where the hydrostatic pressure is often estimated from density by an equation of state, this study proposes to calculate the hydrostatic pressure of soil directly from constitutive models. Results obtained in this paper show that the original SPH method, which has been successfully applied to a vast range of problems, is unable to directly solve elastic–plastic flows of soil because of the so‐called SPH tensile instability. This numerical instability may result in unrealistic fracture and particles clustering in SPH simulation. For non‐cohesive soil, the instability is not serious and can be completely removed by using a tension cracking treatment from soil constitutive model and thereby give realistic soil behavior. However, the serious tensile instability that is found in SPH application for cohesive soil requires a special treatment to overcome this problem. In this paper, an artificial stress method is applied to remove the SPH numerical instability in cohesive soil. A number of numerical tests are carried out to check the capability of SPH in the current application. Numerical results are then compared with experimental and finite element method solutions. The good agreement obtained from these comparisons suggests that SPH can be extended to general geotechnical problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
8.
Deciphering the drastic changes of surface environment and the emergence of animals after the Neoproterozoic Snowball Earth event are important for understanding the changes of surface environment and its influence on the evolution of life through geologic time. Especially, the emergence of two types of Metazoan animals such as animal embryo fossils, cnidarians or sponges, and Ediacaran fauna in the late Neoproterozoic was one of the critical turning points in the biological evolution.Calcium is one of the essential elements for the growth of most animals. In this study, in order to evaluate the Ca cycles in the Neoproterozoic, we have measured Ca isotopic ratios (44Ca/42Ca and 43Ca/42Ca) for phosphorite, dolostone and phosphatic animal embryo fossils with a multiple collector, inductively coupled plasma-mass spectrometer (MC-ICP-MS). The resulting 44Ca/42Ca ratio defined by the relative deviation from the ratio of NIST SRM915a (δ44/42CaNIST915) for phosphorite and dolostone ranges from 0.83 to 0.95‰, demonstrating that the fractionation between phosphorite/dolostone and seawater was very small. This evidence indicates that at the emergence of the Weng'an biota seawater was deficient in Ca probably due to mass deposition of phosphorite/dolostone and to the beginning of Ca-biomineralization.Three phosphatic animal embryo fossils have lower δ44/42Ca values than the phosphorite and dolomite, implying that the precursor of the phosphatic embryo fossils was able to fractionate Ca isotopes through Ca-biomineralization, consistent with marine gastropods.  相似文献   
9.
Roles of horizontal processes in the formation of the density stratification in Hiuchi-Nada are investigated by means of a two-dimensional numerical model. In Hiuchi-Nada, vertically mixed and stratified regions are formed due to the regional difference of the tidal currents, and a tidal front is formed between the two regions. The horizontal mixing across the tidal front suppresses the development of the stratification, which is developed too much in the absence of the horizontal mixing. The moderate, realistic stratification cannot be realized in the model without the horizontal mixing. Density currents are formed due to the density distribution associated with the mixed and stratified states. These currents contribute to the horizontal mixing through the shear effect. Horizontal heat transfer from the outside water generates the vertical circulation and causes the stratification. This effect dominantly appears at the early and late stages of the stratified season. The stratification is initiated before the beginning of the surface heating and persists beyond the end, due to the horizontal heat transfer.  相似文献   
10.
In situ X-ray diffraction study on KAlSi3O8 has been performed using the cubic type high pressure apparatus, MAX90, combined with synchrotron radiation. We determined the phase relations of sanidine, the wadeite-type K2Si4O9+kyanite (Al2SiO5)+coesite (SiO2) assemblage, and hollandite-type KAlSi3O8, including melting temperatures of potassic phases, up to 11 GPa. Our data on subsolidus phase boundaries are close to the recent data of Yagi and Akaogi (1991). Melting relations of sanidine are consistent with the low pressure data of Lindsley (1966). The breakdown of sanidine into three phases reduces melting temperature, and wadeite-type K2Si4O9 melts first around 1500° C in three phase coexisting region. Melting point of hollandite-type KAlSi3O8 is between 1700° C and 1800° C at 11 GPa. If these potassic phases host potassium in the earth's mantle, the true mantle solidus temperature will be much lower than the reported dry solidus temperature of peridotite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号