首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5178篇
  免费   1347篇
  国内免费   41篇
测绘学   104篇
大气科学   194篇
地球物理   2514篇
地质学   2277篇
海洋学   345篇
天文学   744篇
综合类   10篇
自然地理   378篇
  2022年   9篇
  2021年   70篇
  2020年   95篇
  2019年   228篇
  2018年   254篇
  2017年   338篇
  2016年   393篇
  2015年   407篇
  2014年   443篇
  2013年   548篇
  2012年   377篇
  2011年   381篇
  2010年   377篇
  2009年   291篇
  2008年   317篇
  2007年   233篇
  2006年   200篇
  2005年   213篇
  2004年   175篇
  2003年   179篇
  2002年   162篇
  2001年   137篇
  2000年   125篇
  1999年   47篇
  1998年   33篇
  1997年   27篇
  1996年   26篇
  1995年   33篇
  1994年   24篇
  1993年   21篇
  1992年   20篇
  1991年   31篇
  1990年   27篇
  1989年   21篇
  1988年   12篇
  1987年   29篇
  1986年   21篇
  1985年   19篇
  1984年   27篇
  1983年   23篇
  1982年   22篇
  1981年   19篇
  1980年   17篇
  1979年   7篇
  1978年   14篇
  1977年   12篇
  1976年   8篇
  1975年   13篇
  1974年   7篇
  1973年   11篇
排序方式: 共有6566条查询结果,搜索用时 15 毫秒
1.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
2.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
3.
Variscan shear zones in the Armorican Massif represent sites of strong fluid‐rock interaction. The hydrogen isotope composition of muscovite (δDMs) from syntectonic leucogranite allows to determine the source of fluids that infiltrated the footwall of three detachment zones and the South Armorican Shear Zone. Using temperatures of hydrogen isotope exchange estimated from microstructural data, we calculate the hydrogen isotope ratios of water (δDwater) present within the shear zones during high‐temperature deformation. A ~40‰ difference in δDwater values from deep to shallow crustal level reveals a mixing relationship between deep crustal fluids with higher δD values that range from ?34 to ?33‰, and meteoric fluids with δD values as low as ?74‰ in the upper part of detachment footwalls.  相似文献   
4.
We investigate our ability to assess transfer of hexavalent chromium, Cr(VI), from the soil to surface runoff by considering the effect of coupling diverse adsorption models with a two‐layer solute transfer model. Our analyses are grounded on a set of two experiments associated with soils characterized by diverse particle size distributions. Our study is motivated by the observation that Cr(VI) is receiving much attention for the assessment of environmental risks due to its high solubility, mobility, and toxicological significance. Adsorption of Cr(VI) is considered to be at equilibrium in the mixing layer under our experimental conditions. Four adsorption models, that is, the Langmuir, Freundlich, Temkin, and linear models, constitute our set of alternative (competing) mathematical formulations. Experimental results reveal that the soil samples characterized by the finest grain sizes are associated with the highest release of Cr(VI) to runoff. We compare the relative abilities of the four models to interpret experimental results through maximum likelihood model calibration and four model identification criteria (i.e., the Akaike information criteria [AIC and AICC] and the Bayesian and Kashyap information criteria). Our study results enable us to rank the tested models on the basis of a set of posterior weights assigned to each of them. A classical variance‐based global sensitivity analysis is then performed to assess the relative importance of the uncertain parameters associated with each of the models considered, within subregions of the parameter space. In this context, the modelling strategy resulting from coupling the Langmuir isotherm with a two‐layer solute transfer model is then evaluated as the most skilful for the overall interpretation of both sets of experiments. Our results document that (a) the depth of the mixing layer is the most influential factor for all models tested, with the exception of the Freundlich isotherm, and (b) the total sensitivity of the adsorption parameters varies in time, with a trend to increase as time progresses for all of the models. These results suggest that adsorption has a significant effect on the uncertainty associated with the release of Cr(VI) from the soil to the surface runoff component.  相似文献   
5.
Abstract— It has now been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially‐intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 μm and less) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. Here we describe our efforts to alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area—this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store “naked” particles—essentially free of aerogel—as small as 3 μm in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (Particle Impact Experiment, Orbital Debris Collector Experiment, Comet‐99) in low Earth orbit.  相似文献   
6.
Results of several fits of the lunar theory ELP 2000-82B and of Moons' theory of libration are presented. The theories are fitted both to JPL numerical integrations and to LLR observations  相似文献   
7.
Vertical drains are usually installed in subsoil consisting of several layers. Due to the complex nature of the problem, over the past decades, the consolidation properties of multi‐layered ground with vertical drains have been analysed mainly by numerical methods. An analytical solution for consolidation of double‐layered ground with vertical drains under quasi‐equal strain condition is presented in this paper. The main steps for the computation procedure are listed. The convergence of the series solution is discussed. The comparisons between the results obtained by the present analytical method and the existing numerical solutions are described by figures. The orthogonal relation for the system of double‐layered ground with vertical drains is proven. Finally, some consolidation properties of double‐layered ground with vertical drains are analysed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
8.
Abstract— Calculations of the formation of seven types of chondrules in Semarkona from a gas of solar composition were performed with the FACT computer program to predict the chemistries of oxides (including silicates), developed by the authors and their colleagues. The constrained equilibrium theory was used in the calculations with two nucleation constraints suggested by nucleation theory. The first constraint was the blocking of Fe and other metal gaseous atoms from condensing to form solids or liquids because of very high surface free energies and high surface tensions of the solid and liquid metals, respectively. The second constraint was the blocking of the condensation of solids and the formation of metastable liquid oxides (including silicates) well below their liquidus temperatures. Our laboratory experiments suggested subcooling of type IIA chondrule compositions of 400 degrees or more below the liquidus temperature. The blocking of iron leads to a supersaturation of Fe atoms, so that the partial pressure of Fe (pFe) is larger than the partial pressure at equilibrium (pFe(eq)). The supersaturation ratio S = pFe/pFe(eq) becomes larger than 1 and increases rapidly with a decrease in temperature. This drives the reaction Fe + H2O ? H2 + FeO to the right. With S = 100, the activity of FeO in the liquid droplet is 100 times as large as the value at equilibrium. The FeO activities are a function of temperature and provide relative average temperatures of the crystallization of chondrules. Our calculations for the LL3.0 chondrite Semarkona and our study of some non‐equilibrium effects lead to accurate representations of the compositions of chondrules of types IA, IAB, IB, IIA, IIAB, IIB, and CC. Our concepts readily explain both the variety of FeO concentrations in the different chondrule types and the entire process of chondrule formation. Our theory is unified and could possibly explain the formation of chondrules in all chondritic meteorites as well as provide a simple explanation for the complex chemistries of chondrites, and especially for type 3 chondrites.  相似文献   
9.
Morphological and structural data from the whole Tharsis province suggest that a number of shallow grabens radially oriented about the Tharsis bulge on Mars are underlain by dykes, which define giant radiating swarms similar to, e.g. the Mackenzie dyke swarm of the Canadian shield. Mechanisms for graben formation are proposed, and the depth, width, and height of the associated dykes are estimated. Structural mapping leads to define successive stages of dyke emplacement, and provide stress-trajectory maps that indicate a steady source of the regional stress during the whole history of the Tharsis province. A new tectonic model of Tharsis is presented, based on an analogy with dyke swarms on the Earth that form inside hot spots. This model successfully matches the following features: (1) the geometry of the South Tharsis Ridge Belt, which may have been a consequence of the compressional stress field at the boundary between the uplifted and non-uplifted areas in the upper part of the lithosphere at the onset of hot spot activity; (2) extensive lava flooding, interpreted as a consequence of the high thermal anomaly at the onset of plume (hot spot) activity; (3) wrinkle ridge geometry in the Tharsis hemisphere, the formation of which is interpreted as a consequence of buoyant subsidence of the brittle crust in response to the lava load; (4) Valles Marineris limited stretching by preliminary passive rifting, and uplift, viewed as a necessary consequence of adiabatic mantle decompression induced by stretching. The geometrical analysis of dyke swarms suggests the existence of a large, Tharsis-independent extensional state of stress during all the period of tectonic activity, in which the minimum compressive stress is roughly N---S oriented. Although magmatism must have loaded the lithosphere significantly after the plume activity ceased and be responsible for additional surface deformations, there is no requirement for further loading stress to explain surficial features. Comparison with succession of magmatic and tectonic events related to hot spots on the Earth suggests that the total time required to produce all the surface deformation observed in the Tharsis province over the last 3.8 Ga does probably not exceed 10 or 15 Ma.  相似文献   
10.
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3‐D) microstructures. The governing equations for steady incompressible flow are solved using the semi‐implicit method for pressure‐linked equations (SIMPLE) finite difference scheme within a non‐staggered grid system that represents the 3‐D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3‐D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2‐D X‐ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号