首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
地球物理   4篇
  2021年   2篇
  2018年   1篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
数值求解波动方程是大尺度正演波场模拟、基于波动方程的地震偏移和反演成像的关键.本文针对求解二维声波方程的Runge-Kutta 间断有限元(RKDG)方法的数值频散问题,从理论推导和数值分析的角度进行了深入研究,并将其与近似解析离散化方法(Optimal Nearly Analytic Discrete Method,简称ONAD 方法)、Lax-Wendroff 修正方法、交错网格(Staggered-Grid,简称SG)方法的数值频散进行了比较研究.结果表明:RKDG方法以及近似解析离散化方法在压制数值频散方面要好于上述其他方法,特别是空间精度为3阶的RKDG方法,即使当空间步长取波长的一半,即一个波长内取2个网格点时,最大的频散误差也不超过1.67%.同时,我们也通过波场模拟对比研究了不同数值方法的数值频散问题,进一步直观地验证了数值频散的理论分析结果.  相似文献   
2.
间断有限元(Discontinuous Galerkin:DG)方法具有低数值频散、网格剖分灵活、能模拟地震波在复杂介质中传播等优点.因此,本文将一种新的DG方法推广到双相和黏弹性等复杂介质的地震波场模拟,发展了求解Biot弹性波方程和D'Alembert介质波动方程的DG方法.首先通过引入辅助变量将Biot双相介质弹性波方程和D'Alembert介质波动方程转化为关于时间-空间的一阶偏微分方程组,然后对该方程组进行DG空间离散,得到半离散化的常微分方程组.最后,对此常微分方程组,应用加权的Runge-Kutta格式进行时间推进计算.数值结果表明,DG方法可以有效地求解Biot双相介质弹性波方程和D'Alembert介质波动方程,并能很好地压制因离散求解波动方程而产生的数值频散,获得清晰的各种地震波震相.  相似文献   
3.
间断有限元方法(Discontinuous Galerkin method,简称DGM)在求解地震波动方程时具有低数值频散、网格剖分灵活等优点,因此,为适应数值模拟对模拟精度和复杂地质结构的要求,本文提出一种新的加权Runge-Kutta间断有限元(weighted Runge-Kutta discontinuous ...  相似文献   
4.
正演计算是反演研究的基础,为了实现基于三维弹性波方程的全波形反演成像,发展准确、高效、低数值频散的三维正演模拟方法至关重要.为此,本文将修正保辛分部龙格-库塔格式与优化有限差分算子结合,发展了用于数值求解三维弹性波方程的修正时空优化保辛方法(MTSOS).新方法使用二级龙格-库塔格式达到了三阶时间精度,且更适用于求解非均匀介质情况下的弹性波方程,数值频散误差小于同精度保辛分部龙格-库塔(SPRK)方法的误差,提高了计算精度.波场模拟结果表明,三维MTSOS方法可以精确给出数值模拟结果,能够清晰模拟地震波传播过程中产生的各种震相、有效压制数值频散.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号