共查询到20条相似文献,搜索用时 472 毫秒
1.
强降水是滑坡、泥石流等地质灾害的直接诱因,分析其与灾害的发生关系有着重要的意义。从2020年7月鄂西南恩施州连续降雨造成滑坡等地质灾害事件出发,分析了7月的4次强降水过程降水强度与持续时间特征关系,对比了恩施州近年来的地质灾害及致灾背景,并基于区域地质灾害潜在危险性和区域易损性特征,结合5 km空间分辨率、24 h时效多源融合定量降水估测(QPE)驱动陆面水文模型,模拟了灾害过程的径流与土壤湿度特征,着重研究了7月第四次暴雨(7月15—19日)诱发湖北省恩施州8个市(县)群发性滑坡等地质灾害的成因。结果表明,恩施州大部属于地质灾害高易发区,但该区域易损度相对较低,过程降水量100 mm以上,日雨量达到50 mm以上或小时雨量达到10~30 mm,均有可能触发地质灾害,陆面水文过程模拟能较好地表征灾害的发生发展过程,而建立的过程I D曲线对恩施州地区未来的灾害预警有一定的指示作用。 相似文献
2.
3.
利用常规观测资料、地面加密自动站、多普勒雷达等多种观测资料和高分辨率分析场资料,对2018年7月15—18日北京地区特大暴雨过程的降水时空演化规律、成因以及极端性进行了初步分析。结果表明:此次过程有3股明显降水“波峰”,是典型的强度大、时间长、效率高的华北暖区降水。①具有典型华北暴雨环流形势,高层辐散,中层位于副高边缘、缓慢东移的低槽前端,配合低层急流辐合及高温高湿条件。②此次暴雨过程有一定环流形势和物理量极端性,包括副高异常偏强偏北,低层较强的西南气流、暴雨区上游异常偏强的能量和水汽以及异常偏北的热带辐合带(CITZ)。③本地具有一定对流潜势,配合中低层西南气流的剧烈温湿输送,及其在山前强迫抬升,并与夜间山风形成地面辐合线,触发对流;此次过程雷达回波的“列车效应”和后向传播现象明显,回波具有低质心的热带降水回波特点。 相似文献
4.
6.
8.
利用探空、地面自动站、多普勒雷达等观测资料及ERA5再分析产品,对2021年7月17—22日豫北地区的极端暴雨过程进行分析。结果表明,极端暴雨过程具有强降水持续时间长、降水强度极端及地形影响明显等特征。极端暴雨过程发生于稳定的大尺度天气形势下,在日本海高压西伸及台风烟花(2106号)、查帕卡(2107号)西北行背景下,黄淮低涡外围加强北上的东南急流/偏南急流为强降水的发生提供了异常充足的水汽、能量条件,对流层中低层暖湿平流强迫、叠加地形影响的强动力辐合抬升作用及低空弱冷空气扩散南下是形成强降水的重要条件,而大气“强-弱-强-弱”的对流不稳定层结特征转化说明强降水过程中存在着两种互补的物理机制。不同阶段极端短时强降水(小时降水量≥50 mm)对流系统的形态结构和发展演变特征不同,但从雷达回波的垂直分布来看,系统均具有“低质心”特征,质心强度≥55 dBz且≥50 dBz强回波垂直伸展至5~8 km、持续时间1 h以上。强降水对流系统在太行山前30 km左右范围内的后向发展特征明显,一方面与地面西行偏东风/东北风在太行山绕流作用下形成的地形辐合线不断南伸有关,另一方面也与强降水冷池效应促使... 相似文献
9.
《湖北气象》2013,(3)
根据探空资料和国内外网站上实时收集的2012年7月10—22日的数值预报、卫星、雷达和地面资料,对2012年7月21—22日北京特大暴雨的分析和预报过程进行了总结。得到如下结果:(1)\"7·21\"暴雨属于一次典型的中尺度对流复合体MCC暴雨过程,发生在具有高温高湿的偏南风低空急流左前方、高空急流入口区右侧、深厚的暖平流等有利于MCC发生的环流背景下。(2)各种数值模式均不同程度地报出了这次暴雨,预见期可达3~4 d。1~2 d的短期预报可以比较准确地预报出暴雨的落区和强度,但对暴雨的开始和结束时间明显偏晚约6 h。(3)卫星和雷达监测表明,在大尺度雨带到达之前12 h,初始对流已在锋前暖区发生。根据回波的移动、增强和组织化,可以外推第一波雨峰将在中午前后影响北京,从而对数值预报作出及时的修正。回波和地面要素场(风、露点)的配合分析,可以大致确定发生初始对流所必需的静力不稳定条件和初始抬升条件,可为回波外推预报提供一定的天气学依据。 相似文献
10.
利用常规资料、地面加密资料、多普勒雷达资料和NCEP再分析资料等,对2011年7月25日发生在山东省乳山市一次超历史极值的特大暴雨过程进行分析。结果表明:本次特大暴雨是由高空西风槽、低层切变线与副热带高压边缘的低空急流共同影响所致;由低层前期强盛的低空偏南暖湿气流输送使半岛上空低层高温高湿,形成上干冷下暖湿的对流性不稳定层结;近地面向岸风的侧向辐合产生气旋式切变线,是本次暴雨的启动机制,大暴雨的分布与地面辐合线的走向基本一致。此外,半岛上空超低空偏南急流的加强,使中尺度切变线北抬,进而受乳山倒喇叭口地形影响,发展成了中气旋,产生了强降水超级单体风暴。而强降水超级单体风暴造成的短时强降水,是本次暴雨致灾的重要原因。 相似文献
11.
利用中尺度数值模式WRF V3.2模拟分析2012年7月21日发生在北京特大暴雨过程的天气形势与中尺度系统特征,并结合干侵入理论分析了暴雨过程中的干冷空气活动及其对暴雨的影响。结果表明,此次暴雨过程发生在高空槽引导冷空气南下与强盛的西南暖湿气流在华北一带剧烈交汇的天气形势下,西太平洋副热带高压阻碍了高空槽东移,使北京地区的降水过程维持较长时间。暴雨过程伴随着明显的中尺度对流复合体MCC活动,MCC的持续活动与降水中心在时空上具有一致性。WRF模式对暴雨过程有较好的模拟能力,降水发生之前的24 h内不断有来自35°N对流层顶附近的高位涡、低湿的干冷空气,沿着倾斜向北向下的路径侵入大气中低层39°N附近的700 h Pa高度。干侵入在降水开始前24 h到降水前10 h强度变化不大,随后略有减弱,在降水开始之后迅速减弱消失。干侵入对暴雨的影响主要通过在降水开始前及降水初期影响北京地区的大气热力与动力环境来完成。干侵入可以增大暴雨落区大气的位势不稳定,为对流发展储备充沛的对流有效位能,为MCC的发生、发展提供有利的环境条件。同时,干侵入增大了大气中低层的气旋性涡度,有利于中低层空气辐合上升运动,是引发北京地区局地的强对流天气,如MCC及其伴随的暴雨过程可能的触发机制。 相似文献
12.
利用北京地区加密气象站、补盲的北京市规划和自然资源委员会雨量站、双偏振雷达、风廓线雷达、GPS水汽等观测数据和ERA5再分析数据,对北京“23·7”极端强降雨阶段性特征和成因进行了分析。结果表明:“23·7”极端强降雨累计降水量(331mm)和单点最大降水量(1025mm)均打破历史纪录,最大雨强(126.6mm·h-1)排名历史第二位,具有显著的极端性。强降雨可分为5个阶段,其中第Ⅱ和第Ⅳ阶段降水量分别占过程累计降水量的37.1%和39.7%,第Ⅳ阶段雨强更大,对应急流更强,高温、高湿特征也更明显。地形对降雨的增幅作用显著,降水量在海拔100~300m山区迅速增加,极大值出现在海拔约400m的山区,第Ⅱ(第Ⅳ)阶段山区平均降水量和小时雨强分别是平原的2.1(3.0)倍和2.0(2.7)倍;第Ⅱ阶段主要为地形对急流的直接抬升,第Ⅳ阶段为地形绕流辐合和直接抬升共同作用。7月31日上午(第Ⅳ阶段)边界层急流出口区与低空急流入口区耦合导致低层上升运动增强,促使西部山前β中尺度对流系统由块状发展成线状并有γ中尺度涡旋产生,该β中尺度对流系统北上时形成短暂的列车效应,引发了西部山区8个站次100mm·h-1以上的极端短时强降水。 相似文献
13.
2016年7月19-20日华北出现了当年入汛以来最强降水过程。此次降水过程为一次影响范围广、累积雨量大、持续时间长的极端强降水过程,其强度较\"96·8\"强,仅次于\"63·8\"。以暖云降水为主,短时强降水特征明显,局地小时雨强强、且具有明显的地形降水特征。此次强降水发生在南亚高压东伸加强、副热带高压西伸北抬、中高纬度西风带低涡系统发展的环流背景下,黄淮气旋、西南和东南低空急流的异常发展以及水汽的异常充沛表明此次强降水过程动力抬升和水汽条件非常有利。强降水过程表现出明显的阶段特征,主要分为两个阶段:19日凌晨至白天为高空槽前偏东风导致的地形强降水、19日夜间至20日为黄淮气旋系统北侧螺旋雨带造成的强降水。第一阶段的降水主要与高空槽前偏东风/东南风急流的发展有直接关系。这一阶段对流降水旺盛,中层弱干冷平流以及低层强暖平流是对流不稳定能量的维持机制,强降水形成的冷堆与局地地形作用产生的中尺度锋生过程为对流持续新生提供了有利条件。第二阶段的降水主要与低涡切断和黄淮气旋的强烈发展有关。该阶段降水对流相对较弱,黄淮气旋进入华北以后移动缓慢,从而造成降水持续时间较长。 相似文献
14.
2023年7月29日至8月1日,华北京津冀地区遭受极端特大暴雨袭击,导致区域性洪涝灾害,造成重大经济损失和人员伤亡。为探明此次“23·7”华北极端降水过程的基本特征和形成原因,基于地面自动气象站分钟级降水资料、风廓线雷达和雨滴谱仪观测资料及ERA5再分析数据,揭示了“23·7”华北极端暴雨的精细特征和天气学成因。结果表明:(1)此次降水过程持续时间长、累计雨量极大,特大暴雨落区、突破降水量历史极值的国家级观测站站点密集分布在京津冀太行山近山地区,降水呈现显著极端性、区域性差异和阶段性变化。河北和北京太行山东侧迎风坡地区出现持续性、强度相对稳定的强降水过程,雨滴谱分布偏向于高雨滴数密度、小雨滴直径的海洋型对流降水;京津冀平原地区过程雨量明显小于山区,但中尺度对流雨带活跃,降水阵性、对流性特征明显。(2)在“杜苏芮”台风残涡、西太平洋副热带高压、大陆高压等天气系统协同作用下,中层位势高度场出现罕见的“北高南低”+“西低东高”的稳定天气形势。北上台风“杜苏芮”残涡在高压坝以及太行山、燕山地形影响下移动缓慢,残涡中心北侧的地形障碍流与低空东南风之间形成稳定倒槽,京津冀地区出现持续性低层辐合,同时配合来自南海季风和东部洋面台风“卡努”的双路水汽输送,导致京津冀地区出现长历时、区域性极端暴雨过程。(3)在阶段性降水发展过程中,与台风残涡相关的倒槽、暖切变线、低空急流等精细结构调控了中尺度对流系统的组织和发展特征,7月31日早晨至上午京津冀地区出现超过22 m/s的超低空东南风急流,配合对流和地形抬升等因素影响,降水强度明显增强,北京西部山前出现超100 mm/h的极端雨强。此次极端降水事件中的地形影响、中小尺度特征以及极端暴雨可预报性等问题尚待更深入研究。 相似文献
15.
16.
遂宁“7.16”大暴雨成因分析 总被引:1,自引:0,他引:1
本文应用实况和客观资料对遂宁市"7.16"区域性大暴雨的成因进行了分析。结果表明:高空冷暖气流的辐合、低空急流为此次强降水提供了动力和水汽条件,地面热低压边缘的相对冷暖空气交汇的锋区是此次强降水的触发因子,高能、高湿是这次强降水的物理条件。雷达回波产品在短临预报中的跟踪运用,为强降水的形成、开始、落区、移动和结束预报提供了客观的依据,使这次强降水过程预报服务信息能更有效、及时的传达给决策机构和社会公众,最大限度减轻强降水天气的危害。 相似文献
17.
《气象科技》2014,(5)
利用高密度自动站观测记录和长序列气象站观测资料,对2012年7月21日北京地区特大暴雨过程的时空演化规律进行了分析。结果表明:\"7·21\"特大暴雨期间,全市累积降雨量大于100mm的站数达到211个,占全部测站数的92%,96个站累积雨量大于200mm,12个站大于300mm;多数地区降雨时长超过16h,密云大成子站降水时间最长,达到20h,强降雨时长在西南房山和门头沟最大;最大小时雨强中心出现在东北和西南区域,东北部最大雨强中心较突出;平均雨强高值阶段出现在21日18:00—21:00,其中19:00雨强最大,达到22mm/h,但最大雨强在70mm/h以上的高强度降雨发生在21日13:00—14:00(门头沟龙泉站)和19:00—22:00,20:00—21:00平谷挂甲峪站高达100.3mm/h;城区及其附近地带20mm以上量级的小时降雨强度较大,同时傍晚阶段平均累积雨量增长速率快,平均小时降水强度偏大;房山站21日雨量位居1961年以来逐年最大日降水量第2位,仅次于1979年7月18日降雨量,而全市15站平均21日雨量打破了1961年以来的最大日降水量记录,比处于第2位的1963年8月9日平均雨量高出43mm。 相似文献
18.
19.
利用风廓线雷达、地基GPS水汽、微波辐射计、多普勒天气雷达、卫星云图、闪电定位仪、地面加密自动站等多源观测资料,对“16〖DK〗·7”石家庄特大暴雨的演变特征进行分析,结果表明:①GPS水汽总量和微波辐射计水汽总量的高值阶段对应强降水阶段,水汽总量与降水强度成正相关。降水开始前水汽总量明显上升,突升到高值时间比降水开始时间提前5 h,水汽总量突增对降水开始时间有提示作用。②低层偏东风的厚度和强度与强降水呈正相关,低层风向转西北风预示强降水结束。低空急流出现时间比降水开始时间提前5 h,低空急流消散时间比降水结束时间偏早3 h,超过20 m〖DK〗·s-1的东风急流对强降水有一定指示作用。强降雨对应低空急流最低高度的下降和低层最大风速的增加,也就是对应低空急流指数和0~3 km垂直风切变的峰值区。③此过程以稳定性降水为主,仅在19日伴有弱闪电和雷暴出现。雷达回波和卫星云图表现为大范围层状云和积状云混合降水回波,回波质心低,列车效应明显,属于热带降水类型。〖JP2〗云顶亮温最低值-55 ℃,雷达反射率因子、垂直累积液态水含量和回波顶高最大值分别为55 dBz、15 kg〖DK〗·m-2和11 km,与降水量有明显相关;低层径向速度场对应明显的速度大值区或速度模糊。〖JP〗 相似文献
20.
陈佳 《高原山地气象研究》2007,27(4)
本文应用实况和客观资料对遂宁市"7·16" 区域性大暴雨的成因进行了分析.结果表明:高空冷暖气流的辐合、低空急流为此次强降水提供了动力和水汽条件,地面热低压边缘的相对冷暖空气交汇的锋区是此次强降水的触发因子,高能、高湿是这次强降水的物理条件.雷达回波产品在短临预报中的跟踪运用,为强降水的形成、开始、落区、移动和结束预报提供了客观的依据,使这次强降水过程预报服务信息能更有效、及时的传达给决策机构和社会公众,最大限度减轻强降水天气的危害. 相似文献