共查询到20条相似文献,搜索用时 15 毫秒
1.
2002年南海夏季风爆发期间南海北部海气通量分析与比较 总被引:4,自引:0,他引:4
利用国际北极浮冰运动观测资料 (IABP)(1979~1998)以及NCEP/NCAR月平均海平面气压再分析资料(1960~2002), 通过求解海冰运动异常的复斜方差矩阵, 研究了冬季北极海冰运动主模态构成及其与海平面气压变化的关系.冬季海冰运动主模态是由两个海冰运动优势模态的一个线性组合构成, 与这两个运动优势模态有直接关系的海平面气压变化主要发生在北极海盆及其边缘海区.尽管北极涛动(北大西洋涛动)通过影响海平面气压进而影响北极海冰运动, 但是, 北极涛动(北大西洋涛动)并不是决定海冰运动主模态的关键性因素. 相似文献
2.
1998年SCSMEX期间南海夏季风海气交换的主要特征 总被引:11,自引:1,他引:11
根据1998年“南海季风试验(SCSMEX)”强化观测期间“实验3号”和“科学1号”科学考察船船基大气海洋自动观测系统两点连续观测的大气、海洋资料,使用考虑到风速和大气层结影响的整体输送公式计算海-气间的湍流通量交换。根据计算结果分析南海夏季风期间海表大气要素和海温日均值的逐日变化、海洋向大气输送的潜热通量和感热通量以及大气向海洋输送的动量通量等。结果表明:这次夏季风于5月21日从南海南部开始爆发,然后向北部扩展全面爆发。夏季风期间南海南部和南海北部的大气、海洋结构和海气交换特征等都有明显差别。此外,海表温度的变化除了与太阳总辐射有关外,主要是与海洋向大气输送的潜热通量变化有关,对本次夏季风发生较晚、强度较弱作了海-气交换的物理解释,并与1992~1993年西太平洋热带海域西风爆发过程作了比较。 相似文献
3.
利用OAFlux热通量资料和ERA-Interim高度场资料,分析了热带印度洋区域潜热通量的变化与南海夏季风爆发之间的关系,初步探讨了热带印度洋潜热通量变化对南海夏季风爆发早晚的影响过程。结果表明,2月热带印度洋区域的潜热通量与南海夏季风爆发之间存在密切的联系,当2月热带印度洋区域潜热通量较常年偏多(少)时,当年南海夏季风爆发偏晚(早)。当2月热带印度洋的潜热通量异常偏多(少)时,海洋向大气释放更多(少)的潜热,潜热通量通过对流凝结作用对大气加热形成大气热源,再通过大气环流逐渐影响2—4月的高度场,使得南海上空的850 hPa高度场出现异常偏高(低),即副热带高压偏强(弱)。异常强(弱)的副热带高压结合孟加拉湾弱(强)的异常西南风,造成南海夏季风爆发偏晚(早)。因此可以认为热带印度洋2月的潜热通量变化是影响南海夏季风爆发的重要因素。 相似文献
4.
利用2004年和1998年强弱南海夏季风年的逐日位势高度场资料,从能量传播的角度诊断分析了南海夏季风爆发期间的波包传播特征及其与季风爆发的联系.结果表明(1)孟加拉湾是南海季风爆发的关键区域.(2)南海季风爆发前,南海地区的波包值有明显的突变,可能体现了季风爆发的爆发性特征.(3)1998弱夏季风年波包值相对较小,传播较慢;2004强夏季风年波包值相对较大,传播迅速.(4)南海夏季风爆发前,对流层整层的波包值都随时间增加,爆发前一天低层和高层的波包值有相同的变化,夏季风爆发之后,低层波包值与高层的波包值有反相的变化. 相似文献
5.
6.
7.
利用NCEP/NCAR再分析资料、向外长波辐射(outgoing long-wave radiation,OLR)资料以及卫星、地面站点降水资料,对2007年南海夏季风爆发前后的对流活动、环流形势及降水分布进行研究,结果表明:2007年对流活动增强首先出现在孟加拉湾东岸,然后扩展到南海地区;同时副高东撤北抬,南海夏季风于5月中下旬(29候)爆发;季风爆发后,南海地区开始盛行西南气流,亚洲中低纬地区南北温差(风向切变)由正(负)变负(正).2007年南海夏季风爆发期间,水汽输送和季风涌活动增强使我国东部地区降水增多. 相似文献
8.
文中应用1979-1995年共17a的850hPa风场资料和NOAA卫星的OLR资料,分析了南海夏季风爆发的特征。证实南海夏季风爆发,落后于同纬度的中南半岛和菲律宾岛屿地区。但在南海的东部和西部,季风爆发几乎是同时的,具有某种驻波的特征。文中还证实,大多数年份的4,5月间在105°E附近有赤道涡旋形成,这个涡旋引导它上游的赤道西风或南半球西风进入南海南部,为南海的季风爆发创造有利条件。这种涡旋不活跃的年份,季风爆发往往偏晚。它们之间可能存在某种联系。4月中旬,这个涡旋的形成和105°E越赤道气流的初步建立是同时的。进入5月份,这支越赤道气流逐渐加强。南海夏季风的活动与这支气流可能关系密切。如果称位于105°E附近的赤道涡旋为东亚的爆发涡旋,它显然与南亚季风的情况有较大差别。南亚的爆发涡旋与季风爆发的关系是直接的,而在东亚,则是间接的,这也说明了东亚季风比南亚季风更具有复杂性。 相似文献
9.
利用NCEP/NCAR逐日再分析资料分析了南海夏季风与印度夏季风的爆发时间,根据爆发时间差值区分了差异大小年,结果表明二者的爆发具有明显的年际异常.差异偏小年,南海夏季风爆发时,印度半岛已经盛行偏西风,两者几乎同时建立;而差异偏大年,南海夏季风爆发后7候左右印度才盛行偏西风,印度夏季风爆发得晚,环流形势有明显差异;进一步分析机制表明,印度夏季风的建立主要由经向温度反转所决定,而南海夏季风的建立取决于纬向温度反转,二者的爆发具有相对独立性,且纬向温度反转的早晚更大程度上影响了差异的大小,积温线密集带出现的早晚决定了温度反转的早晚. 相似文献
10.
11.
通常La Ni?a年南海夏季风爆发偏早,但是2021年La Ni?a背景下南海夏季风于5月第6候爆发,较常年偏迟。利用NCEP/NCAR再分析资料,从热带海温异常(SSTA)和季节内振荡(ISO)北传的角度来分析2021年南海夏季风爆发偏迟的原因。结果表明La Ni?a确实使春季的西太平洋副热带高压(以下简称西太副高)减弱,特别是4月之前;但是由于热带印度洋海温在冬春季持续偏暖的背景下抵消了La Ni?a的影响,特别是在5月,La Ni?a的影响小于热带印度洋的作用,导致5月西太副高偏强,南海夏季风爆发偏迟。此外,受La Ni?a影响,4月西太副高偏弱,南海地区背景正压南风偏弱,不利于南海地区赤道ISO的北传,这与气候态正好相反;随着热带印度洋SSTA的影响越来越显著,西太副高逐渐加强,直到5月下旬,背景正压经向南风才扩展到10°N以南地区,导致2021年南海地区赤道ISO北传偏迟,这也是2021年南海夏季风爆发偏迟的一个重要原因。热带印度洋和太平洋SSTA通过“竞争”共同对南海夏季风爆发产生影响,因此关注二者在冬春季的发展非常重要。 相似文献
12.
利用2006年Global emissions data和2011年NCEP Final Analysis资料作为WRF-chem3.0模式的初、边值条件,模拟了2011年4月25日—5月25日南海夏季风爆发前后一个月,区域为70~160 °E,0~40 °N范围内的季风区海盐、PM10、COx、SO2、NOx及O3等各种大气化学污染物的三维空间基本分布情况, 结果发现在近地面950 hPa和400 hPa高度附近,由季风爆发引起的南海地区偏西和偏南风分量加强等风场形势的改变,导致了相应各种污染物浓度在分布上的较大变化,尤其在南海地区,由于出现较强风场辐合导致该地区的污染物浓度明显高于其它区域。还发现在垂直方向上,各种污染物的分布都分别受到了由季风爆发期间引起的偏西和偏南风分量变化的影响较明显。同时,季风爆发前陆地上的污染物浓度明显大于海洋上的污染物浓度,而随着季风爆发,大部分污染物的这种海陆浓度差异会大幅减小。 相似文献
13.
14.
不同资料揭示南海夏季风爆发特征的比较 总被引:3,自引:1,他引:3
利用全球月平均海温资料,近地面的风、气温、湿度资料,以及海表感热和潜热资料,在综合分析海温和气象要素变化的基础上,确定了7个全球海气相互作用的关键区,并运用相关分析法,着重分析了各关键海区上空气象要素场与海温的时滞相关,以揭示不同关键海区海气相互作用的异同。分析表明:不同海区海气热力相互作用较强,海温与气温比湿有较好的互代性,特别是中东太平洋和南印度洋海区。动力作用对海温的影响各海区差异较大,中西太平洋海区的动力影响可能更关键。在感热潜热与海温的相关中,东西太平洋海区和西北太平洋及南印度洋两季风区都较关键。通过分析各海区海温和各气象要素相邻月的持续相关概率,进一步了解哪些要素、哪些区在哪些时段其异常持续性好,或异常持续性容易发生破坏,这不仅对做预报有一定的参考价值,也为我们讨论海气相互作用的物理机制提供了依据。 相似文献
15.
16.
利用NCEP/NCAR再分析格点资料普查1950—2004年南海夏季风爆发前后850 hPa的天气形势图,发现大多数年份,在南海夏季风建立的前5天,菲律宾以南海域(0~10 ?N,125~140 ?E)常伴有一次西太平洋热带涡旋的活动过程。选取南海夏季风爆发偏早的2001年进行个例分析,结果表明随着西太平洋热带涡旋的发展和移动,南海地区的正涡度不断增加,使得西太平洋副热带高压减弱东退,南海夏季风爆发。对涡旋区和南海地区的涡度、热源、水汽汇等进行区域平均,发现南海地区正涡度的增大,热源、水汽汇的加强很大程度上是由于西太平洋热带涡旋作用所致,西太平洋热带涡旋的作用可能是2001年南海夏季风爆发的重要因子之一。 相似文献
17.
利用2013年\"华南季风强降水外场试验与研究\"的外场试验数据、美国NCEP FNL资料和卫星云顶黑体辐射温度资料,对2013年5月7—17日华南地区出现的两次强降水过程(7—12日和14—17日)中的高低空环流以及相关气象要素场的变化进行了对比分析。中国南海夏季风于5月第3候建立,两次过程分处于夏季风爆发前后。通过对比影响两次强降水过程的主要环流系统如南亚高压、高空副热带西风急流、500 hPa环流型、水汽来源等,指出影响两次强降水过程大尺度环流场之间的显著区别,说明南海季风爆发前后大尺度环流场对暴雨影响的典型差异。7—12日过程主要受北方锋面影响和南方暖湿气流辐合作用,导致华南地区出现南北两条雨带。14—17日过程则由于季风爆发后强的暖湿空气活动致使华南地区对流活跃,从而形成一条位于广东北部的雨带,此次过程强降水比第1次过程集中且对流性更强。两次降水过程的内在物理机制是一个准平衡态的热力适应过程,由于第2次过程降水更强,导致热源作用明显增强,动力向热力的适应过程也更显著。利用探空资料揭示出两次过程暖区暴雨大气热力和动力条件存在显著区别,7—12日南海季风爆发前的暖区暴雨主要受低层强垂直风切变导致的大气斜压不稳定影响;14—17日南海季风爆发后的暖区暴雨主要受高低空急流的强耦合作用影响。 相似文献
18.
海洋考察资料分析表明,夏季风期间南海南部海区海洋输向大气的热通量倍增,热通量的增、减过程与对流天气密切相关,季风潮天气过程中的热通量值居各天气过程之首,某些时段感热通量会出现大气向海洋的反向输送过程,地理环境使同一天气过程影响下海区内各通量的水平分布明显不均,海洋输向大气的热通量明显影响500hPa以下各层大气。 相似文献
19.
南海夏季风爆发的数值模拟 总被引:3,自引:0,他引:3
利用高分辨率的区域气候模式 (RegCM_NCC) 对南海夏季风爆发进行模拟研究。研究表明:该模式对积云对流参数化方案的选择十分敏感, 其中以Kuo积云参数化方案为最好, 可以比较成功地模拟出南海夏季风的爆发时间、爆发前后高、低层风场的剧烈变化以及季风与季风雨带的向北推进。然而该方案对于雨量和副热带高压位置的模拟, 与观测相比尚存在一定的偏差, 主要表现为副热带高压位置模拟偏北、偏东; 南海地区的降水量模拟偏少、降水范围偏小。此外, 采用4种参数化方案 (Kuo, Grell, MFS, Betts-Miller) 集成的结果在某种程度上要优于单个方案的结果, 这种改善主要体现在对南海地区季风爆发后降水的模拟上。 相似文献
20.
南海夏季风爆发的气候特征 总被引:8,自引:4,他引:8
利用TOGA-COARE强化期“实验3”号科学考究船所取得的表面气象的探空资料,对考察期间的热通量进行详尽的分析和计算,特别是对发生在IOP期间的两次西风爆发过程中西太平洋热带海域热通量的特征进行了重点分析,并讨论了它们与大尺度环流及其中高纬度环流的关系。 相似文献