首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《Journal of Structural Geology》2004,26(6-7):1043-1065
Current mine exposures of auriferous veins in the Charters Towers Goldfield (CTGF) are characterized by a scarcity of kinematic indicators. Furthermore, the dip direction of exposed and historically mined orebodies largely coincides with the orientation of pre-existing discontinuities. Consequently, the reactivation of earlier structures during gold deposition is strongly indicated. Both factors complicate the structural analysis of the auriferous vein systems, as slip on earlier faults likely occurred before new rock failure and evolution of fault networks reflecting the stress field present at the time of gold deposition. Despite access to drillcore, open pits and underground workings, extracted data were limited to ten occurrences of wear groove striations and three reverse separations of dykes and a pegmatite cut by sulphide-bearing quartz veins. Because of the scarcity of kinematic information, the structural analysis focused on the geometry of veins and ore-shoots, also applying basic graphical and kinematic methods.  相似文献   

2.
《Journal of Structural Geology》2004,26(6-7):1275-1291
The Indarama lode gold deposit is hosted by vertically-dipping basalt in the Late Archaean Midlands Greenstone Belt of Zimbabwe. Major deformation events at 2.68 and 2.58 Ga established a complex array of fractures. A limited range of orientations of this fracture network opened towards the end of the younger deformation event, creating a lode pattern where 92% of mineralised veins dip at less than 50°, mainly to the E and W, and most strike directions are represented. A clustered distribution of poles to the quartz–carbonate veins indicates a constrictional stress field at the time of vein opening where σ1 and σ2 were near horizontal, (directed NNW–SSE and ENE–WSW, respectively), and σ3 was near vertical. 3-D Mohr circle analysis demonstrates that σ2 was approximately 67% of σ1 (the stress ratio) and that the driving pressure ratio (R′) was approximately 0.4, reflecting the role of fluid pressure, mean stress, and the maximum shear stress in controlling conditions of fracture opening.  相似文献   

3.
《Tectonophysics》2007,429(3-4):165-181
The Dead Sea fault is among the largest active strike–slip fault of the world. This study is focused on the southern part of this fault, from the Sea of Galilee to the Gulf of Aqaba, as monitored mainly by the Jordanian and Israeli seismic networks. The data of arrival times and polarities allowed relocation of earthquakes with a better azimuthal coverage and computation of focal mechanisms. This last step has been realized by inverting the polarities to determine a unique stress tensor for the region and the compatible focal mechanisms. Inversion with different subsets of the data set, based on tectonic regionalization, has also been performed to evaluate the impact of each cluster of earthquakes on the global solution. The population of focal mechanisms is clearly dominated by strike–slip events, with the notable exception of a cluster of earthquakes, south of the Dead Sea, which displays several normal focal mechanisms. This last cluster forces σ1 to be vertical and σ2 to be horizontal. A large number of fault planes, however, are close to the vertical, inhibiting the action of the vertical component of the stress tensor, and acting like under strike–slip stress regime. We observed a good agreement between the location of the earthquakes and the active faults, based on geological data. In addition, there is a good agreement between the fault plane solutions and the orientation of the active faults.  相似文献   

4.
Detailed analysis of 3D seismic data shows how hundreds of large scale conical sandstone intrusions interact with a polygonal fault network in the Faroe-Shetland basin. The intrusions were injected upwards during the Late Miocene through polygonally faulted claystones of Eocene–Oligocene age. Three types of interactions are recognized: (1) intrusions that are unaffected by polygonal faults, (2) intrusions partially or fully intruded into fault planes, and (3) intrusions arrested by polygonal faults. Type 2 intrusions are generally thinner, taller and wider, whereas those unaffected by faults are thicker and characterized by low dips of intrusive limbs (wings). It was found that Type 2 intrusions preferentially intruded into faults striking NW–SE, whereas Type 3 intrusions were arrested by faults striking NE–SW. Comparison of structural data and simple mechanical predictions allows paleostresses to be reconstructed at the time of intrusion. We have established that the basin was undergoing anisotropic horizontal stresses at the time of intrusions in which σH and σh were oriented N145°E and N055°E, respectively. Intrusion depth, polygonal fault dips and strikes have been used to quantify paleostress intensity and to give a σH/σV ratio close to 0.95 and a σh/σH ratio of 0.8. These ratios support the conclusion that sandstone intrusion emplacement occurred just after a Mid-Late Miocene SSE–NNW (N145°E) compressional phase when the compression direction had decreased in intensity and became smaller than lithostatic stress (σv).  相似文献   

5.
The seismotectonic deformations related to the Chuya earthquake September 27, 2003 in the Gorny Altai (Ms = 7.5) are studied in detail. These deformations developed as advanced systems of R-and R’-shears, gash fractures, and compression structural features in loose sediments. In bedrocks, the older shear zones were reactivated, the previously existing fractures were renewed and propagated further, and new faults and crush zones were formed. The system of seismic dislocations is a fault zone no less than 4 km wide that extends in the northwestern direction. As follows from the structural elements that reveal a systematic mutual orientation, the internal structure of this zone is typical of a right-lateral strike-slip fault. The initial stress field that led to the development of the entire assemblage of seismotectonic deformations related to the Chuya earthquake corresponds to the strike-slip type with the NNW, almost meridional direction of compression axis (σ1) and the ENE, almost latitudinal direction of the tension axis (σ3). The local variations of the stress state were expressed in an insignificant shift of σ1 to the northwest or northeast, in the short-term change of relative stress values with retention of their spatial orientation, and in the increasing inclination of σ1 in front of the previously existing fault. The comparison of the internal structure of the seismotectonic fault zone with a tectonophysical model of faulting in large continental systems with a right-lateral offset indicates that the distribution of the advanced faults corresponds to the late stage of faulting, when the main fault is still not formed completely, but its particular segments are already developed distinctly. It is shown that at high rates of displacement the structural features in markedly different rocks develop according to the general laws of solids’ deformation even near the day surface.  相似文献   

6.
董汉文 《地质与勘探》2011,47(2):135-142
邓格庄金矿床位于胶东牟(平)-乳(山)金矿带内,矿区内出露地层以太古界胶东群和古元古界荆山群为主.矿区内构造以断裂为主并较为发育,矿脉主要受其控制,呈北东向、北北东向展布.矿区内控矿断裂为与金牛山断裂同期的次级断裂.通过分析断裂构造征及其与金矿化的关系,可分为成矿前、成矿期和成矿后构造体系,初步认为成矿期的主压应力方向...  相似文献   

7.
Geological plans and sections showing the traces of veins, faults and porphyry dykes associated with the Hercynian batholith, have been used to construct diagrams representing the trajectories of the minimum and intermediate principal stress axes as they were at the time of intrusion of the dykes and as the veinlode fissures formed. The dykes and veins were emplaced during a complicated series of events and the trajectory diagrams represent stress conditions during these overlapping periods of time towards the end of intrusion of the batholith. The mineralizing fluids emanated from the cores of plutons by means of pregranite faults, primary igneous joints, and structures created by intrusion, including faults and extension fissures. The trajectory diagrams indicate that the mapped configuration of veins and porphyry dykes results from fluid pressures, exerted by the mobile cores of granitic cupolas situated within a regional stress field. The stress models also indicate that fugitive dyke magma or hydrothermal fluids, emanating from a cupola, will make the mechanically easiest exit through the flanks of the intrusion. This explains the asymmetrical disposition of belts of mineralization which border the granite cupolas of southwest England.  相似文献   

8.
对海沟金矿的断层、节理进行野外和井下研究,应用赤平投影方法对节理产状进行统计与分析,确定研究区节理有6 个较为明显的优势产状,构成3 个节理系,并进一步确定了3 期变形作用的构造应力场。海沟金矿早期受到NW--SE 向伸展作用影响,使先存的近EW 向海沟断层发生左行走向滑移,在海沟断层上盘形成NE 向正断层组合,同时伴有含金石英脉的贯入; 中期受到NEE--SWW 向挤压作用,NE 向正断层组合和发育于断层之中的含金石英脉受到压扭性变形作用的改造; 晚期受到 NW--SE 向挤压作用,海沟断层表现为右行走滑的特征,NE 向断层组合再次受到挤压作用改造,同时形成NWW 向和NNW 向走滑断层,使早期形成的断层和含金石英脉受到变形改造而发生空间上的错位。3 期变形作用很可能是自白垩纪以来发生的,与太平洋板块向欧亚大陆的俯冲作用有关。  相似文献   

9.
The Woods Point dyke swarm comprises hundreds of narrow, subparallel igneous dykes and dozens of pipe-shaped dyke bulges within strongly deformed early Palaeozoic turbidites of the Melbourne trough. Porpylitic alteration accompanied dyke emplacement and was followed by microfracturing induced by high fluid pressures, involving CO2 of magmatic origin, as the dykes solidified. Further stress caused through-going faults having ladder and other patterns. Isotopic studies suggest that metamorphically or geothermally-derived solutions filled the faults and other fractures with quartz and carbonate and altered immediately adjacent dyke rock. However earlier-formed vein and wall rock carbonates retained their magmatic isotopic composition. Fluid inclusions indicate vein deposition began at approximately 400°C with salinities up to 9 weight percent NaCl. Nine sulfide minerals and gold were deposited in the veins after ankerite, sericite and albite, while quartz deposition continued through all stages. Sulfur isotopic determinations indicate the vein sulfur could not have been derived from adjacent sedimentary rocks, nor exclusively from the dykes. Metamorphic waters of marine origin is a viable source for sulfur. Saline and CO2-rich alkaline solutions reacted with the dyke wall rocks and probably evolved chemically prior to deposition of gold. Vug carbonates deposited by meteoric water that leached vein carbonates mark the end of vein formation.Present Adress: 631 Station Street, North Carlton 3054, Victoria, Australia  相似文献   

10.
广西巴马料屯金矿床是较为典型的卡林型金矿床,金矿体与燕山晚期石英斑岩脉空间上相关。矿床勘查成果和野外露头观察均表明石英斑岩脉切割金矿体,说明岩浆岩形成于矿体之后。成矿元素地球化学测量结果表明,Au、As元素沿石英斑岩脉走向出现明显的分异,表现为在导矿和容矿断层区段Au、As质量分数高,局部形成矿(化)体;远离矿体的砂泥岩和灰岩围岩地段,则逐渐降低至正常背景值,说明石英斑岩侵位过程中切割早期的矿体或含矿断层,萃取了矿(化)体中成矿元素Au、As,从而在这些断层之间形成一定宽度的高值带。成矿元素地球化学测量支持岩浆岩形成于矿体之后的结论。石英斑岩脉白云母斑晶的40Ar/39Ar坪年龄为(95.5±0.7) Ma,代表了岩浆侵位年龄,由于岩脉形成于矿体之后,此年龄可以作为成矿年代的上限年龄。本矿床及滇黔桂"金三角"其他卡林型金矿的确切成矿年代,尚需更多高精度直接成矿年龄数据的约束。  相似文献   

11.
Palaeostress results derived from brittle mesoscopic structures on Deception Island (Bransfield Trough, Western Antarctica) show a recent stress field characterized by an extensional regime, with local compressional stress states. The maximum horizontal stress (σy) shows NW–SE and NNE–SSW to NE–SW orientations and horizontal extension (σ3) in NE–SW and WNW–ESE to NW–SE directions. Alignments of mesofractures show a maximum of NNE–SSW orientation and several relative maxima striking N030-050E, N060-080E, N110-120E, and N160-170E. Subaerial and submarine macrofaults of Deception Island show six main systems controlling the morphology of the island: N–S, NNE–SSW, NE–SW, ENE–WSW to E–W, WNW–ESE, and NNW–SSE. Geochemical patterns related to submarine hydrothermally influenced fault and fissure pathways also share the same trends. The orientation of these fault systems is compared to Riedel shear fractures. Following this model, we propose two evolutionary stages from geometrical relationships between the location and orientation of joints and faults. These stages imply a counter-clockwise rotation of Deception Island, which may be linked to a regional left-lateral strike-slip. In addition, the simple shear zone could be a response to oblique convergence between the Antarctic and Pacific plates. This stress direction is consistent with the present-day movements between the Antarctic, Scotia, and Pacific plates. Nevertheless, present basalt-andesitic volcanism and deep earthquake focal mechanisms may indicate rollback of the former Phoenix subducted slab, which is presently amalgamated with the Pacific plate. We postulate that both mechanisms could occur simultaneously.  相似文献   

12.
At the end of the western part of Bagharan Kuh Mountain in the northeast of Iran, mountain growth has been stopped toward the west because of the stress having been consumed by the thrusting movements and region rising instead of shear movement. Chahkand fault zone is situated at the western part of this mountain; this fault zone includes several thrust sheets that caused upper cretaceous ophiolite rocks up to younger units, peridotite exposure and fault related fold developing in the surface. In transverse perpendicular to the mountain toward the north, reduction in the parameters like faults dip, amount of deformation, peridotite outcrops show faults growth sequence and thrust sheets growth from mountain to plain, thus structural vergence is toward the northeast in this fault zone. Deformation in the east part of the region caused fault propagation fold with axial trend of WNW-ESE that is compatible with trending of fault plane. In the middle part, two types of folds is observed; in the first type, folding occurred before faulting and folds was cut by back thrust activity; in the second type, faults activity caused fault related folds with N60-90W axial trend. In order to hanging wall strain balance, back thrusts have been developed in the middle and western part which caused popup and fault bend folds with N20-70E trend. Back thrusts activity formed footwall synclines, micro folds, foliations, and uplift in this part of the region. Kinematic analysis of faults show stress axis σ1 = N201.6, 7, σ2 = N292.6, 7.1, σ3 = N64.8, 79.5; stress axis obtained by fold analysis confirm that minimum stress (σ3) is close to vertical so it is compatible with fault analysis. Based on the results, deformation in this region is controlled by compressional stress regime. This stress state is consistent with the direction of convergence between the Arabian and Eurasian plates. Also study of transposition, folded veins, different movements on the fault planes and back thrusts confirm the progressive deformation is dominant in this region that it increases from the east to the west.  相似文献   

13.
Gold mineralization in the Tanami district is hosted within moderately northwest dipping turbiditic sedimentary and basaltic volcanic rocks of the Paleoproterozoic Mt. Charles Formation. The gold occurs within a complex sinistral wrench-fault array and associated veins and alteration haloes. The main mineralized faults have a northerly trend and dip steeply east. Subsidiary structures trend at 030° and 070° and dip towards the southeast. Paleostress calculations based on fault striation populations and geometry (strike and dip) of faults indicate that at the time of the mineralizing event, σ 1 was sub-horizontal and SE–NW directed with σ 2 subvertical. Structural studies indicate that the mineralization occurred after the regional folding event and synchronous with the emplacement of felsic dykes into the mine sequence. Gold veins in the Tanami district are interpreted to be part of an outer thermal aureole gold system that formed during the emplacement of granitoids in the nearby ∼1,815 to ∼1,799 Ma Frankenia and/or Coomarie domes. Economic gold mineralization occurred late in the paragenetic history of the district. Gold is hosted by quartz-carbonate veins within shear zones, and also in the surrounding sericite- quartz- pyrite ± carbonate-altered wallrocks. Gold-mineralized veins precipitated at depths of 3 to 6 km from high temperature (∼300°C), low salinity (∼5 wt% NaCl equivalent) fluids with low CO2 contents. Barren quartz, dolomite and calcite veins that occur in pre- and post-mineralization thrust faults formed from high salinity (∼20 wt% NaCl equivalent), low temperature (∼120–150°C) basinal brines. Pyrite in the gold mineralized veins and alteration halos has lower δ 34S values (6.8 to 12.5‰) than local diagenetic pyrite (17.8 to 19.2‰) or pyrite in pre-mineralization thrust faults (31.7 to 37.1‰). The mineralizing fluids are inferred to have contained a well-homogenized mixture of magmatic and sedimentary-derived sulfur. Editorial handling: D. Huston  相似文献   

14.
The southern termination of the left-lateral ‘Moyenne Durance’ Fault (FMD) consists in several segments, some being connected to WSW-trending south-verging reverse faults. To the south, the Aix fault is reactivated in a post-Oligocene strike-slip movement showing that these two faults might belong to the same system. This system seems to transfer, in turn, slip to the east-trending, south-verging Trévaresse reverse fault, allowing southward propagation of the Alpine deformation front in western Provence. Fault kinematics analysis shows lateral stress field change between the two faults. Strike-slip stress state is characterized by an average N150°E trending σ1 near the FMD termination, whilst strike-slip and reverse faulting stress states show north-trending σ1 to the south. To cite this article: P. Guignard et al., C. R. Geoscience 337 (2005).  相似文献   

15.
冀东宽城-青龙-金厂峪金矿集中区早燕山期地壳运动与构造-岩浆活动强烈,形成了区内NE向、EW向与NW向压扭性-扭性主干断裂构造-岩浆带与20多个金矿床。早燕山期构造应力场对这些断裂的形成演化与金矿的成矿作用有重要的控制意义。在野外调研与古构造应力测量的基础上,确定受力方式、位移方向与若干地点的差应力值,进而应用有限元计算模拟方法,剖析早燕山期区域平面构造应力场及其与金矿化的关系。结果表明,该金矿集中区早燕山期区域最大主压应力方向以NW-SE向为主,最小主压应力方向以NE-SW向为主;区域构造应力值变化于2.5-220MPa;构造应力方向、构造应力大小与应力梯度带对金矿化均有明显的控制作用。   相似文献   

16.
Earthquake focal mechanism solutions from 18 events in the central and northern parts of the Gulf of Suez with local magnitudes ranging from 2.8 to 5.2 and occurring between 1983 and 2004 are used to determine the type of motion and stress pattern of the region. Fault plane solutions show mostly normal component; pure normal faulting mechanisms and normal faulting with a strike-slip component. Only some mechanisms show pure strike-slip faulting. The fault planes strike in NW, WNW, NNE and ENE directions, in conformity with the geologically observed striking faults in the northern and central parts of the gulf. The principal stress orientation is also estimated by inverting the selected focal mechanism solutions. The results show that the northern part of the Gulf is subjected to NE–SW to NNE–SSW extension, with a horizontal σ3 (plunge 3°) and subvertical σ1 (plunge 80°). This means that the horizontal extensional stresses are still present in the central/northern Gulf of Suez.  相似文献   

17.
白乃庙金矿床控矿构造解析   总被引:1,自引:0,他引:1  
白乃调金矿区的节理包括东西向剖面共轭剪切节理,北东-北西向平面共轭剪切节理,北北东向剖面共轭剪切节理。与之相应的断层有近东西向逆断层,北东向和北西向的平移断导以及北北东向的斜冲断层。此外,北东向断层的低序次构造亦呈北北东走向,但其性质为平移断层。东西向、北东和北西向断裂形成于南北向挤压构造应力场。它们控制了主要含金石英脉展布。其中,26号主矿脉就位于北东向平移双断裂-白乃庙断裂的北北东向低序次平移  相似文献   

18.
《Journal of Structural Geology》2004,26(6-7):1025-1041
Intrusion-related gold deposits at the Clear Creek, Scheelite Dome and Dublin Gulch properties of the Tombstone Gold Belt (TGB), Yukon Territory have dominantly E-striking, steeply dipping, auriferous quartz extension veins within intrusions. In adjacent metasedimentary rocks gold is hosted in subvertical NW- to NNW-striking sinistral faults as veins and breccias, in E-striking extension veins and locally in E- to ENE-striking fault veins. These structural relationships indicate low magnitude, broadly E–W-directed shortening and N–S extension during stock emplacement and gold mineralisation at ∼92 Ma.The lack of any deviation or deflection of the extension vein orientations in the country rocks, with respect to their orientation within the stocks, indicates consistent stress trajectories in both rock types. These TGB deposits formed at 5–8 km depth, where mean and differential stresses may be greater in magnitude than in shallower porphyry environments. Many porphyry systems feature magmatic-related stresses that dominated the local stress field, with more variable vein orientations the result. Conversely, orogenic gold systems usually exhibit strong dimensionality in vein orientations. Fault-hosted mineralisation in metasedimentary rocks of the TGB deposits in this study is comparable in geometry, but generally smaller in size than in many orogenic gold systems. Intrusion-related systems of the TGB exhibit intermediate structural styles of mineralisation that provide a useful bridge in understanding the diversity of mechanically controlled structural styles in otherwise mostly unrelated gold deposit types.  相似文献   

19.
NE Iran, including the Kopeh Dagh and Allah Dagh-Binalud deformation domains, comprises the northeastern boundary of the Arabia–Eurasia collision zone. This study focuses on the evolution of the Plio-Quaternary tectonic regimes of northeast Iran. We present evidence for drastic temporal changes in the stress state by inversion of both geologically and seismically determined fault slip vectors. The inversions of fault kinematics data reveal distinct temporal changes in states of stress during the Plio-Quaternary (since ~ 5 Ma). The paleostress state is characterized by a regional transpressional tectonic regime with a mean N140 ± 10°E trending horizontal maximum stress axis (σ1). The youngest (modern) state of stress shows two distinct strike-slip and compressional tectonic regimes with a regional mean of N030 ± 15°E trending horizontal σ1. The change from the paleostress to modern stress states has occurred through an intermediate stress field characterized by a mean regional N trending σ1. The inversion analysis of earthquake focal mechanisms reveals a homogeneous, transpressional tectonic regime with a regional N023 ± 5°E trending σ1. The modern stress state, deduced from the youngest fault kinematics data, is in close agreement with the present-day stress state given by the inversions of earthquake focal mechanisms. According to our data and the deduced results, in northeast Iran, the Arabia–Eurasia convergence is taken up by strike-slip faulting along NE trending left-lateral and NNW trending right-lateral faults, as well as reverse to oblique-slip reverse faulting along NW trending faults. Such a structural assemblage is involved in a mechanically compatible and homogeneous modern stress field. This implies that no strain and/or stress partitioning or systematic block rotations have occurred in the Kopeh Dagh and Allah Dagh-Binalud deformation domains. The Plio-Quaternary stress changes documented in this paper call into question the extrapolation of the present-day seismic and GPS-derived deformation rates over geological time intervals encompassing tens of millions of years.  相似文献   

20.
《地学前缘(英文版)》2019,10(6):2093-2100
In quartzo-feldspathic continental crust with moderate-to-high heat flow,seismic activity extends to depths of 10-20 km,bounded by isotherms in the 350-450 C range.Fluid overpressuring above hydrostatic in seismogenic crust,is heterogeneous but tends to develop in the lower seismogenic zone(basal seismogenic zone reservoir=b.s.z.reservoir) where the transition between hydrostatically pressured and overpressured crust is likely an irregular,time-dependent.3-D interface with overpressuring concentrated around active faults and their ductile shear zone roots.The term Arterial Fault is applied to fault structures that root in portions of the crust where pore fluids are overpressured(i.e.at hydrostatic pressure) and serve as feeders for such fluids and their contained solutes into overlying parts of the crust.While arterial flow may occur on any type of fault,it is most likely to be associated with reverse faults in areas of horizontal compression where fluid overpressuring is most easily sustained.Frictional stability and flow permeability of faults are both affected by the state of stress on the fault(shear stress,τ;normal stress,σ_n),the level of pore-fluid pressure,P_f,and episodes of fault slip,allowing for a complex interplay between fault movement and fluid flow.For seismically active faults the time dependence of permeability is critical,leading to fault-valve behaviour whereby overpressures accumulate at depth during interseismic intervals with fluid discharged along enhanced fault-fracture permeability following each rupture event.Patterns of mineralization also suggest that flow along faults is non-uniform,concentrating along tortuous pathways within the fault surface.Equivalent hydrostatic head above ground level for near-lithostatic overpressures at depth(1.65×depth of zone) provides a measure of arterial potential.Settings for arterial faults include fault systems developed in compacting sedimentary basins,faults penetrating zones of active plutonic intrusion that encounter overpressured fluids exsolved from magma,together with those derived from contact metamorphism of fluid-rich wallrocks,and/or from regional devolatilisation accompanying prograde metamorphism.Specially significant are active faults within accretionary prisms rooted into overpressured subduction interfaces,and steep reverse faults activated by high overpressures from b.s.z.reservoirs during compressional inversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号