首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase relationship between climate parameters during terminations gives insight into deglaciation mechanisms. By combining foraminiferal Mg/Ca and alkenone thermometers with planktonic and benthic foraminiferal δ18O, we determined the phase relationship between local sea surface temperature (SST) and global seawater δ18O changes in the Coral Sea in the Southwestern Pacific over the last 360 ka. The onset of the SST warming preceded the seawater δ18O change by several ka for Termination I, II and III. During Termination I, the SST warming started at 20 ka BP, earlier than atmospheric CO2 rise suggesting that the greenhouse effect was not the main trigger of this early warming. Compilation of 14C-dated SST records from the whole Pacific during Termination I reveals that the onset of the warming is generally earlier in the Southern and the tropical Pacific than in the North Pacific. This spatio-temporal warming pattern suggests linkage between the southern ocean and tropical Pacific. The early tropical warming could provide heat and moisture to the northern high latitudes, modifying radiative balance and precipitation over ice sheets at the onset of deglaciation.  相似文献   

2.
To understand Holocene climate evolutions in low-latitude region of the western Pacific, paired δ18O and Mg/Ca records of planktonic foraminifer Globigerinoides ruber (250–300 μm, sensu stricto, s.s.) from a marine core ORI715-21 (121.5°E, 22.7°N, water depth 760 m) underneath the Kuroshio Current (KC) off eastern Taiwan were analyzed. Over the past 7500 years, the geochemical proxy-inferred sea surface temperature (SST) hovered around 27–28 °C and seawater δ18O (δ18OW) slowly decreased 0.2–0.4‰ for two KC sites at 22.7° and 25.3°N. Comparison with a published high-SST and high-salinity equatorial tropical Pacific record, MD98-2181 located at the Mindanao Current (MC) at 6.3°N, reveals an anomalous time interval at 3.5–1.5 kyr ago (before 1950 AD). SST gradient between the MC site and two KC site decrease from 1.5–2.0 °C to only 0–1 °C, and δ18OW from 0.1–0.3‰ to 0‰ for this 2-kyr time window. The high SST and low gradient could result from a northward shift of the North Equatorial Current, which implies a weakened KC. The long-term descending δ18OW and increasing precipitation in the entire low-latitude western Pacific and the gradually decreasing East Asian summer monsoonal rainfall during middle-to-late Holocene is likely caused by different land and ocean responses to solar insolation and/or enhanced moisture transportation from the Atlantic to Pacific associated with the southward movement of ITCZ.  相似文献   

3.
Information on the ocean/atmosphere state over the period spanning the Last Glacial Maximum – from the Late Pleistocene to the Holocene – provides crucial constraints on the relationship between orbital forcing and global climate change. The Pacific Ocean is particularly important in this respect because of its dominant role in exporting heat and moisture from the tropics to higher latitudes. Through targeting groundwaters in the Mojave Desert, California, we show that noble gas derived temperatures in California averaged 4.2 ± 1.1 °C cooler in the Late Pleistocene (from ~43 to ~12 ka) compared to the Holocene (from ~10 to ~5 ka). Furthermore, the older groundwaters contain higher concentrations of excess air (entrained air bubbles) and have elevated oxygen-18/oxygen-16 ratios (δ18O) – indicators of vigorous aquifer recharge, and greater rainfall amounts and/or more intense precipitation events, respectively. Together, these paleoclimate indicators reveal that cooler and wetter conditions prevailed in the Mojave Desert from ~43 to ~12 ka. We suggest that during the Late Pleistocene, the Pacific ocean/atmosphere state was similar to present-day El Nino-like patterns, and was characterized by prolonged periods of weak trade winds, weak upwelling along the eastern Pacific margin, and increased precipitation in the southwestern U.S.  相似文献   

4.
《Quaternary Science Reviews》2007,26(3-4):405-414
Alkenone sea surface temperature (SST) records were generated from the Ocean Drilling Program's (ODP) Sites 1014 and 1016 to examine the response of the California Current System to global climate change during the last 136 ka. The temperature differences between these sites (ΔSSTNEP=SSTODP1014–SSTODP1016) reflected the intensity of the California Current and varied between 0.4 and 6.1 °C. A high ΔSSTNEP (weaker California Current) was found for late marine isotope stage (MIS) 2 and early MIS 5e, while a low ΔSSTNEP (stronger California Current) was detected for mid-MIS 5e and MIS 1. Spectral analysis indicated that this variation pattern dominated 23- (precession) and 30-ka periods. Comparison of the ΔSSTNEP and SST based on data from core MD01-2421 at the Japan margin revealed anti-phase variation; the high ΔSSTNEP (weakening of the California Current) corresponded to the low SST at the Japan margin (the southward displacement of the NW Pacific subarctic boundary), and vice versa. This variation was synchronous with a model prediction of the tropical El Niño-Southern Oscillation behavior. These findings suggest that the intensity of the North Pacific High varied in response to precessional forcing, and also that the response has been linked with the changes of tropical ocean–atmosphere interactions.  相似文献   

5.
《Quaternary Science Reviews》2007,26(3-4):351-367
High-resolution archaeological and paleoenvironmental records from California's Channel Islands provide a unique opportunity to examine potential relationships between climatically induced environmental changes and prehistoric human behavioral responses. Available climate records in western North America (7–3.8 ka) indicate a severe dry interval between 6.3 and 4.8 ka embedded within a generally warm and dry Middle Holocene. Very dry conditions in western North America between 6.3 and 4.8 ka correlate with cold to moderate sea-surface temperatures (SST) along the southern California Coast evident in Ocean Drilling Program (ODP) Core 893A/B (Santa Barbara Basin). An episode of inferred high marine productivity between 6.3 and 5.8 ka corresponds with the coldest estimated SSTs of the Middle Holocene, otherwise marked by warm/low productivity marine conditions (7.5–3.8 ka). The impact of this severe aridity on humans was different between the northern and southern Channel Islands, apparently related to degree of island isolation, size and productivity of islands relative to population, fresh water availability, and on-going social relationships between island and continental populations. Northern Channel Islanders seem to have been largely unaffected by this severe arid phase. In contrast, cultural changes on the southern Channel Islands were likely influenced by the climatically induced environmental changes. We suggest that productive marine conditions coupled with a dry terrestrial climate between 6.3 and 5.8 ka stimulated early village development and intensified fishing on the more remote southern islands. Contact with people on the adjacent southern California Coast increased during this time with increased participation in a down-the-line trade network extending into the western Great Basin and central Oregon. Genetic similarities between Middle Holocene burial populations on the southern Channel Islands and modern California Uto-Aztecan populations suggest Middle Holocene movement of people at this time from southern California desert environs westward to the southern islands, a migration perhaps stimulated by increased continental aridity.  相似文献   

6.
Many sediment records from the margins of the Californias (Alta and Baja) collected in water depths between 60 and 1200 m contain anoxic intervals (laminated sediments) that can be correlated with interstadial intervals as defined by the oxygen-isotope composition of Greenland ice (Dansgaard–Oeschger, D–O, cycles). These intervals include all or parts of Oxygen Isotope Stage 3 (OIS3; 60–24 cal ka), the Bölling/Alleröd warm interval (B/A; 15–13 cal ka), and the Holocene. This study uses organic carbon (Corg) and trace-element proxies for anoxia and productivity, namely elevated concentrations and accumulation rates of molybdenum and cadmium, in these laminated sediments to suggest that productivity may be more important than ventilation in producing changes in bottom-water oxygen (BWO) conditions on open, highly productive continental margins. The main conclusion from these proxies is that during the last glacial interval (LGI; 24–15 cal ka) and the Younger Dryas cold interval (YD; 13–11.6 cal ka) productivity was lower and BWO levels were higher than during OIS3, the B/A, and the Holocene on all margins of the Californias. The Corg and trace-element profiles in the LGI–B/A–Holocene transition in the Cariaco Basin on the margin of northern Venezuela are remarkably similar to those in the transition on the northern California margin. Correlation between D–O cycles in Greenland ice with gray-scale measurements in varved sediments in the Cariaco Basin also is well established. Synchronous climate-driven changes as recorded in the sediments on the margins of the Californias, sediments from the Cariaco Basin, and in the GISP-2 Greenland ice core support the hypothesis that changes in atmospheric dynamics played a major role in abrupt climate change during the last 60 ka. Millennial-scale cycles in productivity and oxygen depletion on the margins of the Californias demonstrate that the California Current System was poised at a threshold whereby perturbations of atmospheric circulation produced rapid changes in circulation in the eastern North Pacific Ocean. It is likely that the Pacific and Atlantic Oceans were linked through the atmosphere. Warmer air temperatures during interstadials would have strengthened Hadley and Walker circulations, which, in turn, would have strengthened the subtropical high pressure systems in both the North Pacific and the North Atlantic, producing increased rainfall over the Cariaco Basin and increased upwelling along the margins of the Californias.  相似文献   

7.
Several abrupt climate events during the Holocene, including the widely documented oscillation at 8.2 thousand years before present (ka), are attributed to changes in the North Atlantic thermohaline circulation. Additional mechanisms, such as interactions between atmospheric circulation, ice-sheet dynamics, and the influence of solar irradiance, also have been proposed to explain abrupt climatic events, but evidence remains elusive. This study presents evidence from multi-proxy analyses on the Holocene sediments of Eleanor Lake, interior British Columbia. Climatic inferences from our decadal-resolution record of biogenic silica (BSi) abundance are supported by changes in diatom and pollen assemblages from the same core and correlations with existing regional climate records. The BSi record reveals abrupt and persistent climatic shifts at 10.2, 9.3, and 8.5 ka, the latter two of which are coeval with major collapses of the Laurentide Ice Sheet. The record also reveals a short-term cooling at 8.2 ka that is distinct from the 8.5 ka event and similar in magnitude to several other late-Holocene coolings. BSi is correlated with solar-irradiance indices (r = 0.43–0.61), but the correlation is opposite in sign to that expected from direct solar forcing and weakens after 8 ka. Possible mechanisms causing the abrupt and persistent climate changes of the early Holocene include 1) sudden losses of ice and proglacial lake extent, causing a shift in the meridional structure of atmospheric circulation, 2) a possible link between solar minima and El Niño-like conditions that are correlated with warm spring temperature in interior British Columbia, and 3) the influence of solar irradiance variability on the position of the polar jet, possibly via effects on the strength of the glacial anticyclone.  相似文献   

8.
Changes in the orbital parameters, solar output, and ocean circulation are widely considered as main drivers of the Holocene climate. Yet, the interaction between these forcings and the role that they play to produce the pattern of changes observed in different domains of the climate system remain debated. Here, we present new early to middle Holocene season-specific sea surface temperature (SST) and δ18Oseawater results, based on organic-walled dinoflagellate cyst and planktonic foraminiferal data from two sediment cores located in the central (SL21) and south-eastern (LC21) Aegean Sea (eastern Mediterranean). Today, this region is affected by high to mid latitude climate in winter and tropical/subtropical climate in summer. The reconstructed δ18Oseawater from LC21 displays a marked (~1.3%) negative shift between 10.7 and 9.7 ka BP, which represents the regional expression of the orbitally driven African monsoon intensification and attendant freshwater flooding into the eastern Mediterranean. A virtually contemporaneous shift, of the same sign and magnitude, is apparent in the δ18Ospeleothem record from Soreq Cave (Northern Israel), an important part of which may therefore reflect a change in the isotopic composition of the moisture source region (Aegean and Levantine Seas). Our SST reconstructions show that Aegean winter SSTs decreased in concert with intensifications of the Siberian High, as reflected in the GISP2 nss [K+] record. Specifically, three distinct sea surface cooling events at 10.5, 9.5–9.03 and 8.8–7.8 ka BP in the central Aegean Sea match increases in GISP2 nss [K+]. These events also coincide with dry interludes in Indian monsoon, hinting at large (hemispheric) scale teleconnections during the early Holocene on centennial timescales. A prominent short-lived (~150 years) cooling event in core SL21 – centred on 8.2 ka BP – is coeval to the ‘8.2 ka BP event’ in the Greenland δ18Oice, which is commonly linked to a melt-water related perturbation of the Atlantic Meridional Overturning Circulation and associated ocean heat transport. By deciphering the phasing between a recently published record of reduced overflow from the Nordic Seas into the northern North Atlantic, the Greenland δ18Oice ‘8.2 ka BP event’ anomaly, and the short-lived cooling in SL21, we demonstrate severe far-field impacts of this North Atlantic event in the Aegean Sea. The Aegean is isolated from the North Atlantic oceanic circulation, so that signal transmission must have been of an atmospheric nature.  相似文献   

9.
Hydrography of the Bay of Bengal is highly influenced by the river runoff and rainfall during the southwest monsoon. We have reconstructed δ18Osw, sea surface salinity and sea surface temperature (SST) changes in the Bay of Bengal by using paired measurements of δ18O and Mg/Ca in a planktonic foraminifera species Globigerinoides ruber from core SK218/1 in the western Bay of Bengal in order to understand the rainfall variability associated with southwest monsoon over the past 32 kyr. Our SST reconstructions reveal that Bay of Bengal was ~3.2 °C cooler during the LGM as compared to present day temperature and a ~3.5 °C rise in SST is documented from 17 to 10 ka. Both SST and δ18Osw exhibit greater amplitude fluctuations during MIS 2 which is attributable to the variability of NE monsoon rainfall and associated river discharge into the Bay of Bengal in association with strong seasonal temperature contrast. On set of strengthening phase of SW monsoon was started during Bølling/Allerød as evidenced by the low δ18Osw values ~14.7 ka. δ18Osw show consistently lower values during Holocene (with an exception around 5 ka), which suggests that the freshening of Bay of Bengal due to heavy precipitation and river discharge caused by strong SW monsoon. Results of this study signify that the maximum fluctuations of the NE monsoon rainfall during MIS 2 appear to be controlled by the strong seasonality and boundary conditions.  相似文献   

10.
n-Alkane biomarker distributions in sediments from Swamp Lake (SL), in the central Sierra Nevada of California (USA), provide evidence for an increase in mean lake level ~ 3000 yr ago, in conjunction with widespread climatic change inferred from marine and continental records in the eastern North Pacific region. Length distributions of n-alkane chains in modern plants growing at SL were determined and compared to sedimentary distributions in a core spanning the last 13 ka. As a group, submerged and floating aquatic plants contained high proportions of short chain lengths (< nC25) compared to emergent, riparian and upland terrestrial species, for which chain lengths > nC27 were dominant. Changes in the sedimentary n-alkane distribution over time were driven by variable inputs from plant sources in response to changing lake level, sedimentation and plant community composition. A shift toward shorter chain lengths (nC21, nC23) occurred between 3.1 and 2.9 ka and is best explained by an increase in the abundance of aquatic plants and the availability of shallow-water habitat in response to rising lake level. The late Holocene expansion of SL following a dry mid-Holocene is consistent with previous evidence for increased effective moisture and the onset of wetter conditions in the Sierra Nevada between 4.0 and 3.0 ka.  相似文献   

11.
《Quaternary Science Reviews》2007,26(19-21):2586-2597
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.  相似文献   

12.
This paper contributes to the emerging picture of late Pleistocene and Holocene environmental change in the Bonneville basin, western North America, through analysis of pollen and sediments from the Blue Lake marsh system, a major wetland area located on the western margin of the Great Salt Lake desert. Analyses of data obtained from the upper 4 m of the Blue Lake core suggest that during the latest Pleistocene, when Lake Bonneville covered the Blue Lake site, pine and sagebrush dominated terrestrial plant communities. These steppe-woodland taxa declined in abundance after ~12 cal ka BP. Wetland plant communities developed at or nearby Blue Lake by ~11.9 cal ka BP and bulrush-dominated marshes were established no later than 10.8 cal ka BP. The Blue Lake wetlands largely desiccated during a dry and warm early middle Holocene ~8.3–6.5 cal ka BP. Climatic amelioration starting ~6.5 cal ka BP is marked principally by a local return of marshes at the expense of playa and grass meadow communities, and a regional increase in sagebrush relative to other dryland shrubs. Singleleaf pinyon pine migrated into the nearby Goshute Mountains after ~8 cal ka BP. Late Holocene fluctuations include cool intervals from ~4.4 to 3.4 and ~2.7 to 1.5 cal ka BP and warmer conditions from 3.4 to 2.7 cal BP and after 1.5 cal ka BP.  相似文献   

13.
《Quaternary Science Reviews》2007,26(5-6):759-772
Quantitative reconstruction of the climatic history of the Chinese Loess Plateau is important for understanding present and past environment and climate changes in the Northern Hemisphere. Here, we reconstructed mean annual temperature (MAT) and mean annual precipitation (MAP) trends during the last 136 ka based on the analysis of phytoliths from the Weinan loess section (34°24′N, 109°30′E) near the southern part of the Loess Plateau in northern China. The reconstructions have been carried out using a Chinese phytolith–climate calibration model based on weighted averaging partial least-squares regression. A series of cold and dry events, as indicated by the reconstructed MAT and MAP, are documented in the loess during the last glacial periods, which can be temporally correlated with the North Atlantic Heinrich events. Our MAT and MAP estimations show that the coldest and/or driest period occurred at the upper part of L2 unit (Late MIS 6), where MAT dropped to ca 4.4 °C and MAP to ca 100 mm. Two other prominent cold-dry periods occurred at lower Ll-5 (ca 77–62 ka) and L1-1 (ca 23–10.5 ka) where the MAT and MAP decreased to about 6.1–6.5 °C and 150–370 mm, respectively, ca 6.6–6.2 °C and 400–200 mm lower than today. However, the highest MAT (average 14.6 °C, max. 18.1 °C) and MAP (average 757 mm, max. 1000 mm) occurred at Sl interval (MIS 5). During the interstadial of L1-4–L1-2 (MIS 3) and during the Holocene warm-wet period, the MAT was about 1–2 °C and MAP 100–150 mm higher than today in the Weinan region. The well-dated MAT and MAP reconstructions from the Chinese Loess Plateau presented in this paper are the first quantitatively reconstructed proxy record of climatic changes at the glacial–interglacial timescale that is based on phytolith data. This study also reveals a causal link between climatic instability in the Atlantic Ocean and climate variability in the Chinese Loess Plateau.  相似文献   

14.
Forty-four boulders from moraines in two glacial valleys of Mount Erciyes (38.53°N, 35.45°E, 3917 m), central Turkey, dated with cosmogenic chlorine-36 (36Cl), indicate four periods of glacial activity in the past 22 ka (1 ka = 1000 calendar years). Last Glacial Maximum (LGM) glaciers were the most extensive, reaching 6 km in length and descending to an altitude of 2150 m above sea level. These glaciers started retreating 21.3 ± 0.9 ka (1σ) ago. They readvanced and retreated by 14.6 ± 1.2 ka ago (Lateglacial), and again by 9.3 ± 0.5 ka ago (Early Holocene). The latest advance took place 3.8 ± 0.4 ka ago (Late Holocene). Using glacier modeling together with paleoclimate proxy data from the region, we reconstructed the paleoclimate at these four discrete times. The results show that LGM climate was 8–11 °C colder than today and moisture levels were somewhat similar to modern values, with a range between 20% more and 25% less than today. The analysis of Lateglacial advance suggests that the climate was colder by 4.5–6.4 °C based on up to 1.5 times wetter conditions. The Early Holocene was 2.1–4.9 °C colder and up to twice as wet as today, while the Late Holocene was 2.4–3 °C colder and its precipitation amounts approached to similar conditions as today. Our paleoclimate reconstructions show a general trend of warming for the last 22 ka, and an increase of moisture until Early Holocene, and a decrease after that time. The recent glacier terminates at 3450 m on the northwest side of the mountain. It is a remnant from the last advance (possibly during the Little Ice Age). Repeated measurements of glacier length between 1902 and 2008 reveal a retreat rate of 4.2 m per year, which corresponds to a warming rate of 0.9–1.2 °C per century.  相似文献   

15.
A peat cellulose δ18O record spanning around 14,000 years from the Hani peat mire in northeastern China reveals several abrupt temperature anomalies in the period from the last deglaciation through the Holocene. The timing of these anomalies coincides well with the notable cooling events recorded respectively using the GISP2 ice core and ice-rafted sediment of the North Atlantic Ocean, such as the Older Dryas, Inter-Allerød, Younger Dryas, and the nine ice-rafted debris events. The results demonstrate that this repeating pattern of abrupt temperature deterioration is not limited to the North Atlantic area at high latitude but also exists in the western North Pacific region at middle latitude. The synchronous temperature anomalies possibly are resulted from the joint effects of meltwater discharge into the North Atlantic Ocean and reduced solar activity. In the period from around 8600 to 8200 cal. yrs BP the Hani peat record shows a broad δ18O peak that may reflect compound climate signals resulting from the two kinds of forcing factors: the temperature drop related to reduced solar activity at around 8600–8250 cal. yrs BP, and the temperature anomaly attributed to the meltwater effect at around 8220 ± 70 cal. yrs BP. This result may provide palaeo-temperature evidence for existence of the sharp “8.2 k” event in the western North Pacific region. In addition, our results have revealed that in the period from the last deglaciation through the Holocene the synchronous temperature anomalies before and after the “8.2 k” event seem to be related to meltwater outflow and reduced solar activity, respectively. It is important that the all temperature anomalies—whether because of reduced solar activity in the late Holocene or from meltwater discharge in the early Holocene—are accompanied by an abrupt decline in the Indian Ocean summer monsoon and abrupt strengthening of the East Asian summer monsoon. It is likely that reduced solar activity and meltwater outflow appear to modulate Earth system changes in the same direction. The influences could be compounded. Reduced solar activity and meltwater outburst both appear to act as triggers for occurrence of the El Niño phenomenon in the equatorial Pacific Ocean, which may result in broad teleconnections between the temperature anomaly in the Northern Hemisphere and abrupt variation of the Asian monsoon.  相似文献   

16.
《Quaternary Science Reviews》2007,26(1-2):115-129
The Gulf of California is a marginal seaway under the influence of a monsoon climate that produces cool, dry winters and warm, humid summers. Winds, tidal mixing and coastal-trapped waves forced by climate and the Pacific Ocean control nutrient advection and primary productivity (PP). Strong northwest winds from the subtropical East Pacific High Pressure system begin in November and last until April and drive coastal upwelling along the mainland margin, especially in the central and southern Gulf. In the northern Gulf, particularly around the midrift island, tidal mixing and turbulence occurs year round, advecting nutrients into the mixed layer and high productivity. During summer and early fall months, winds are variable, of less intensity and mainly blow cross-basin except in the most northern Gulf. Summer PP is generally low in the central and southern Gulf except along the mainland where coastal-trapped waves associated with tropical surges and hurricanes generate mixing over the continental shelf. Mesoscale eddies or gyres often associated with jets and filaments extend to depths of 1000 m and transport nutrient-enriched upwelled waters and plankton detritus across the Gulf. The largest and most persistent gyres rotate in an anti-cyclonic direction (east to west) and are a principal source of the plankton export to the peninsula margin.Two major biogenic sediment patterns are present in core-top sediments. Hemipelagic biosiliceous-rich muds are accumulating beneath upwelling areas of high productivity in the central Gulf and along the mainland margin. Calcium carbonate- and organic carbon-rich (OC) sediments are concentrated along the peninsula margin, generally beneath lower productivity waters with the highest OC content in areas with the lowest productivity. The high, uniform biosiliceous content in Guaymas basin, extending southward into Carmen basin reflects the redistribution by mesoscale gyres of phytoplankon debris produced in mainland coastal upwelling and tidally forced areas around the midrift islands.Holocene biogenic patterns are similar to the present day with the major difference in rates of accumulation. Phytoplankton production prior to about 8200 yr BP was significantly higher in the central and southern Gulf, decreased though the mid-Holocene and has been reasonably steady for the past 2500 yr. The strong north–south and east–west gradients in present-day phytoplankton productivity patterns are also reflected in the Holocene sediment record. A series of depositional cycles occur in the biogenic record with the strongest peaks of variability at about 150 (144±18), 200 (198±5) and 350 (350±40) yrs. Longer periodicities are present prior to 3200 yr BP but the 350 yr cycle dominates in the late Holocene where it is best expressed as productivity/dissolution cycles in the carbonate record.  相似文献   

17.
Chemical proxies are useful analogs for reconstructing physical properties of sea water, such as sea surface temperature (SST) and sea surface salinity (SSS). Time series of these inferred properties would allow for reconstructions of past El Niño–Southern Oscillation (ENSO) events, where no instrumental records exist. In this study, a monthly oxygen isotope record from a Porites coral is used to explain how past ENSO events are recorded in the coral skeletons. The sample covers a 12 year period and was collected from Nanwan Bay, Taiwan. During El Niño events the coral skeleton is shown to produce a δ18O–SST correlation with a slope of −0.12 ± 0.04‰ °C−1. During other times, this value is significantly different, with a slope of −0.21 ± 0.04‰ °C−1. Coral that grew during El Niño summers have δ18O values which are enriched by ∼0.2‰, relative to other times. A possible mechanism to explain this difference may be enhanced penetration of Kuroshio Current waters into the South China Sea during summer. The observed contrast in the correlation of δ18O–SST variability in this sample supports the influence of El Niño in eastern Asia.  相似文献   

18.
Proglacial lake sediments at Goting in the Higher Central Himalaya were analyzed to reconstruct the summer monsoon variability during the Last Glacial to early Holocene. Sedimentary structures, high resolution mineral magnetic and geochemical data suggest that the lacustrine environment experienced fluctuating monsoonal conditions. Optically stimulated luminescence (OSL) dating indicates that the lake sedimentation occurred before 25 ka and continued after 13 ka. During this period, Goting basin witnessed moderate to strengthened monsoon conditions around 25 ka, 23.5 ka–22.5 ka, 22 ka–18 ka, 17 ka–16.5 ka and after14.5–13 ka. The Last Glacial phase ended with the deposition of outwash gravel dated at ~11 ka indicating glacial retreat and the onset of Holocene condition. Additionally, centennial scale fluctuations between 16.5 ka and 12.7 ka in the magnetic and geochemical data are seen.A close correspondence at the millennial scale between our data and that of continental and marine records from the Indian sub-continent suggests that Goting basin responded to periods of strengthened monsoon during the Last Glacial to early Holocene. We attribute the millennial scale monsoon variability to climatic instability in higher northern latitudes. However, centennial scale abrupt changes are attributed to the result of albedo changes on the Himalaya and Tibetan plateau.  相似文献   

19.
《Applied Geochemistry》2004,19(11):1655-1686
Water samples from short-screen monitoring wells installed along a 90-km transect in southwestern Kansas were analyzed for major ions, trace elements, isotopes (H, B, C, N, O, S, Sr), and dissolved gases (He, Ne, N2, Ar, O2, CH4) to evaluate the geochemistry, radiocarbon ages, and paleorecharge conditions in the unconfined central High Plains aquifer. The primary reactions controlling water chemistry were dedolomitization, cation exchange, feldspar weathering, and O2 reduction and denitrification. Radiocarbon ages adjusted for C mass transfers ranged from <2.6 ka (14C) B.P. near the water table to 12.8 ± 0.9 ka (14C) B.P. at the base of the aquifer, indicating the unconfined central High Plains aquifer contained a stratified sequence of ground water spanning Holocene time. A cross-sectional model of steady-state ground-water flow, calibrated using radiocarbon ages, is consistent with recharge rates ranging from 0.8 mm/a in areas overlain by loess to 8 mm/a in areas overlain by dune sand. Paleorecharge temperatures ranged from an average of 15.2 ± 0.7 °C for the most recently recharged waters to 11.6 ± 0.4 °C for the oldest waters. The temperature difference between Early and Late Holocene recharge was estimated to be 2.4 ± 0.7 °C, after taking into account variable recharge elevations. Nitrogen isotope data indicate NO3 in paleorecharge (average concentration=193 μM) was derived from a relatively uniform source such as soil N, whereas NO3 in recent recharge (average concentration=885 μM) contained N from varying proportions of fertilizer, manure, and soil N. Deep water samples contained components of N2 derived from atmospheric, denitrification, and deep natural gas sources. Denitrification rates in the aquifer were slow (5 ±  10−3 μmol N L−1 a−1), indicating this process would require >10 ka to reduce the average NO3 concentration in recent recharge to the Holocene background concentration.  相似文献   

20.
《Quaternary Science Reviews》2003,22(21-22):2303-2310
The present work revisits the chronology of the archaeologically controversial Pedra Furada Rock Shelter of Southeast Piauı́, Brazil, using an improved radiocarbon laboratory pre-treatment and measurements on charcoal samples. The procedure, known as ABOX-SC (acid–base–wet oxidation followed by stepped combustion), has previously been used to secure radiocarbon dates of >40 ka for the antiquity of human occupation of Australia and South Africa, and now has been applied to charcoal from the previously dated oldest occupation layer of the Pedra Furada site. Previous radiocarbon dating had obtained only lower limits of 40–45 ka BP for the Pedra Furada basal layer. Nine charcoal samples from well-structured hearths were subjected to the ABOX-SC procedure and their radiocarbon content determined by accelerator mass spectrometry. Measurements on five of the samples returned ages of greater than 56 ka BP, from graphites produced from ABOX pre-treated charcoal combusted at 910°C. Two other samples were greater than 50 ka BP. The remaining two samples were essentially completely combusted at 650°C, with no material surviving to make a 910°C CO2 fraction. Their ages were 41.3 and 47.2 ka BP. Ages obtained from graphites generated from the 650°C combusted fraction are considered minimum ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号