首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
新疆阿尔泰地区断裂控矿的多重分形机理   总被引:1,自引:2,他引:1  
新疆阿尔泰地区断裂构造非常发育并对热液成矿有重要控制作用。分形分析表明该区断裂和矿床的空间分布均为多重分形分布,断裂的奇异指数为1.597~2.403,多重分维谱值为0.551~1.706;矿床的奇异指数为0.925~2.287,分维谱值为0.138~1.363。断裂的高的奇异指数和分维谱值表明该区断裂构造具有较高的成熟度和连通性,有利于提高岩石渗透性、促进流体流动和热液矿床的形成。断裂构造的多重分形分布导致该区热液成矿作用的多重分形分布。断裂体系演化过程中不同断裂部位变形和渗透性存在明显差异,数值模拟表明断裂与岩性和流体之间存在强烈的耦合作用并导致不同岩性的断裂具有明显不同的断裂渗透率。断裂-脉体系演化是一个自组织过程,元胞自动机模拟表明只有在分形渗透临界以上连通性较好的脊骨断裂部位是最有利于流体流动和成矿作用的。因此只有在部分有利的断裂部位才能形成矿床,并导致了断裂构造的奇异指数和多重分维谱值明显高于矿床。  相似文献   

2.
Hydrogeologic modeling of the genesis of carbonate-hosted lead-zinc ores   总被引:1,自引:0,他引:1  
 Carbonate-hosted lead–zinc ore deposits in the Mississippi Valley region of North America and in the central midlands region of Ireland provide good examples where ancient groundwater migration controlled ore formation deep within sedimentary basins. Hydrogeologic and geochemical theories for ore genesis are explored in this paper with mathematical models that allow for complex permeability fields in two or three dimensions, hydrothermal flows in fault systems, and coupled effects of geochemical reactions. The hydrogeologic framework of carbonate-hosted ores is analyzed with the aim of developing a quantitative understanding of the necessary and sufficient processes required to form large ore deposits. Numerical simulations of basin-scale hydrodynamics and of deposit-scale reactive flow are presented to demonstrate the processes controlling low-temperature Pb–Zn ore genesis in two world-class ore districts, in southeast Missouri, USA, and central Ireland. The numerical models presented here provide a theoretical basis for the following observations: (1) topography-driven brine migration was the most effective mechanism for forming the large ore districts of the Mississippi Valley, such as the Viburnum Trend of southeast Missouri, during the uplift of the Appalachian–Ouachita mountain belt in late Paleozoic time; (2) three-dimensional flow fields were created by a dolomite facies of the Viburnum Trend, which acted as a giant lens for focusing metal and heat in southeast Missouri to produce the largest known concentration of lead in the Earth's crust; (3) ore-mineralization patterns were controlled locally by basement relief, permeability structure, and sandstone pinchouts, because of their effects on cooling and fluid-flow rates along the Viburnum Trend; (4) both density-driven and topography-driven fluid flow were important for ore genesis in the Irish midlands, where brines moved northward away from the Variscan orogen, leaked into the Hercynian basement, and discharged along normal faults up into the sedimentary cover; and (5) mixed convection within northeast–southwest fault planes elevated heat flow and flow rates that fed ore deposition by fluid mixing, in some cases near the Carboniferous seafloor in Ireland. Received, February 1998 · Revised, July 1998 · Accepted, September 1998  相似文献   

3.
A majority of the world's sediment-hosted exhalative (SEDEX) lead-zinc deposits are vent-distal. They are not underlain by a discordant alteration zone or stockwork vent complex that would indicate the path by which ore fluids reached the seafloor. The absence of a vent complex, together with sulfide mineral replacement of host rock mineral assemblages has led several investigators to suggest that, in spite of the well-layered nature of these deposits, mineralization was formed by sub-seafloor lateral migration of ore fluids along permeable strata. Field observations, supported by simple laboratory experiments, however, suggest an alternative process for characterizing the genesis of vent-distal SEDEX deposits. Cool, saline brines (e.g., ~120 °C and >15 wt% NaCl equiv.) are denser than seawater and, upon discharging into the sea, would flow away from the discharge vent as bottom-hugging fluids, similar to the behavior of turbidity currents. Their high densities and velocities prevent them from mixing with overlying seawater, thereby precluding significant cooling and dilution of the ore fluid. Upon coming to rest in a seafloor depression, the addition of H2S and/or dilution of the ore fluids to lower salinities result in the eventual precipitation of a vent-distal SEDEX deposit. Furthermore, the dense ore-forming fluid can sink into permeable sediments beneath the brine pool by displacing less dense pore water. The ore fluids are thus capable of effectively overprinting and/or replacing pre-existing minerals in the consolidating sediment pile.  相似文献   

4.
The role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium (URU) deposits in sedimentary basins during tectonically quiet periods is investigated. A number of reactive-flow modeling experiments at the deposit scale were carried out by assigning different dip angles and directions to a fault and various permeabilities to hydrostratigraphic units). The results show that the fault dip angle and direction, and permeability of the hydrostratigraphic units govern the convection pattern, temperature distribution, and uranium mineralization. A vertical fault results in uranium mineralization at the bottom of the fault within the basement, while a dipping fault leads to precipitation of uraninite below the unconformity either away from or along the plane of the fault, depending on the fault permeability. A more permeable fault causes uraninite precipitates along the fault plane, whereas a less permeable one gives rise to the precipitation of uraninite away from it. No economic ore mineralization can form when either very low or very high permeabilities are assigned to the sandstone or basement suggesting that these units seem to have an optimal window of permeability for the formation of uranium deposits. Physicochemical parameters also exert an additional control in both the location and grade of URU deposits. These results indicate that the difference in size and grade of different URU deposits may result from variation in fluid flow pattern and physicochemical conditions, caused by the change in structural features and hydraulic properties of the stratigraphic units involved.  相似文献   

5.
Tetsuro Hirono   《Tectonophysics》2005,397(3-4):261-280
Geological investigation of the deformation structures and sedimentary setting of the Emi Group, a Miocene sand-rich accretionary complex, central Japan, revealed a six stage-structural evolution during shallow level accretion in a subduction zone. The early deformation (stage 1) is characterized by independent particulate flow in layer parallel faults, scaly cleavages and web structures, and upward dewatering in dish-and-pillar structures and breccia injections, while later deformation (stages 2–6) involve mappable scale folding, meso- to macro-scopic thrusts and web structures with cataclastic flow. Based on microscopic analyses of these structures, the early faulting with independent particulate flow (stage 1 deformation) is associated with dilatancy and preferred orientation of void space, whereas the later faulting with cataclastic flow (stage 2 deformation) occurs with compaction and crude preferred orientation. The former features imply more permeable fluid migration pathways, supported by the permeability measurements and direct imaging of fluid flow by X-ray CT. On the other hand, the later fault zone has lower permeability and porosity than intact rock, and plays as fluid sealing. Thus, in the early stage (stages 1), fluid flow occurs as focused flow through dilatant fault zones with independent particulate flow or fluid migration by upward dewatering forming dish-and-pillar structures and breccia injections, whereas no evidence of fluid flow is recognized at the later stages (stages 2–6). Namely the fault zones focus fluid flow during primary accretion in shallow levels, and the fluid flow is strongly controlled by the deformation mechanism. Furthermore, the change of the deformation mechanism could be effected by progressive increment of the confining pressure, accompanied with accretion and lithification in the accretionary prism. In the shallow, dilatant-faulting regime where the deformation mechanism is independent particulate flow, focused flow dominates, whereas in the deep, cataclastic regime distributed flow may play a main conduit rather than the focused flow.  相似文献   

6.
《Journal of Structural Geology》2004,26(6-7):1087-1108
A widely observed correlation between high fracture density and mineralization throughout terranes and geological time indicates a fundamental underlying ore-forming process. In Archaean greenstone-hosted deposits, high-density fracturing was accompanied by enhanced fluid flow during fault/fracture network development, producing regional-scale fluid pressure gradients that focussed hydrothermal fluids into preferentially fractured areas. Fracture density is both increased and decreased during faulting and fault healing, and fracture density accumulates over time, in zones of high palaeo-fluid flow. Localised zones where the density of fracturing is increased by deformation, become permeability nodes for migrating hydrothermal fluids leading to large zones of alteration and gold precipitation. The Ora Banda mining centre in Western Australia contains significant gold deposits that appear to demonstrate a close association between high-density fracturing and gold precipitation. Fracture density in the Ora Banda mines was enhanced by fault–fault intersections, fault–contact intersections and changes in fault geometry. The mine-scale relationships between fracture density and gold mineralization are repeated at smaller and larger scales, hence these relationships may be used in targeting for gold exploration. Contouring the density of fracturing in a region provides a semi-quantitative way to rank areas for exploration and uses data from mapping, drilling and high-quality geophysical data as a basis for analyses. Fracture density contouring is complementary to other prospectivity-analysis methods.  相似文献   

7.
再论德兴斑岩铜矿成矿物质来源   总被引:11,自引:1,他引:11  
金章东  朱金初 《地质论评》2000,46(3):255-262
本文从德兴斑岩体岩石化学、流体包裹体、Sr同位素的研究出发,谁了铜厂成矿体系斑岩 内在性地成矿物质运移、聚集的控制作用。结果表明,浅侵位岩浆能产生大量的热液流体。并由中高温高盐度岩浆流体携带铜等成矿物质从深部向上部及边部迁移、聚集,在斑岩体顶部及接触带中、上部沉淀成矿。进上步的研究又支持了德兴斑岩铜矿的正岩浆成因。  相似文献   

8.
华南花岗岩型铀矿表生汲取卸“载”富集成矿模式   总被引:3,自引:0,他引:3  
华南花岗岩型铀矿的主要地质特征和与其伴生的主要地质事件是建立成矿模式的基础。本文所提出的成矿模式,着重说明矿液循环过程。断裂带内活动的矿液分为两股:一股来自大气降水,自上而下,从围岩中汲取了铀,称载铀液;一股主要来自地壳深部,自下至上,含H_2S等还原物质,谓卸铀体。这两股成因、组份、性质回然不同的溶液在一定深度上相遇混合,使铀沉淀。在此过程中,断裂带中地下热水的纵向循环导致了矿液的贝努利横向循环,致使矿液源源不断地流向成矿区,使那里的成矿作用在某一时期内持续不断地进行。  相似文献   

9.
流体成矿系统与成矿作用研究   总被引:24,自引:4,他引:24  
贾跃明 《地学前缘》1996,3(4):253-258
对几乎所有金属矿床类型来说,其形成过程均与金属从源岩的活化、原始渗滤、矿质运移和金属沉淀富集成矿关系密切,这些过程主要是由流体的运动和作用完成的。因此,识别金属和流体的来源,追溯流体从源区将金属运载至最终成矿部位所经过的路径,以及查明金属和流体沿运移通道发生的物理、化学和时间上的各种变化及其特殊性质,可以为矿床评价与勘查提供很有价值的定量成矿信息。成矿流体的来源-运移-沉淀(-堆积)过程会以流体成矿系统的形式保留下来。对流体成矿系统和作用的全面了解可通过调查活动的和古代的两种系统获得。活动流体成矿系统是目前正在进行原始矿质搬运的系统,调查这些系统可对运移通道中的含矿流体进行取样和监测研究。古流体成矿系统包括各时代从含金石英脉到铅-锌矿脉系统的所有热液脉型矿床以及沉积喷气型和所谓层控矿床。对含矿矿物和岩石的广泛岩石学、化学、流体包裹体和同位素研究将为定量评价与预测矿床的分布和变化提供至关重要的资料。流体成矿系统内具有一些重要特征,如各种地质要素的方向性、相关性和指示性变化。  相似文献   

10.
通过对茶梁子矿区的地质背景、矿体特征、矿石特征及岩石地球化学特征进行综合研究,初步探讨了矿床的成因。认为矿体是由含硫质的低温热液携带矿质运移到断裂构造的有利部位沉淀而形成的。同时在表生环境下,原生矿体经过后期的次生改造作用后,形成了富含铁、锰氧化物的土状矿石,并且以较为富集的铁、锰氧化物作为寻找钴的直接标志。  相似文献   

11.
There is little consensus on whether carbonate-hosted base metal deposits, such as the world-class Irish Zn + Pb ore field, formed in collisional or extensional tectonic settings. Helium isotopes have been analysed in ore fluids trapped in sulphides samples from the major base metal deposits of the Irish Zn-Pb ore field in order to quantify the involvement of mantle-derived volatiles that require melting to be realised, as well as test prevailing models for the genesis of the ore fields. 3He/4He ratios range up to 0.2 R a, indicating that a small but clear mantle helium contribution is present in the mineralising fluids trapped in galena and marcasite. Sulphides from ore deposits with the highest fluid inclusion temperatures (~200 °C) also have the highest 3He/4He (>0.15 R a). Similar 3He/4He are recorded in fluids from modern continental regions that are undergoing active extension. By analogy, we consider that the hydrothermal fluids responsible for the carbonate-hosted Irish base metal mineralization circulated in thinned continental crust undergoing extension and demonstrate that enhanced mantle heat flow is ultimately responsible for driving fluid convection.  相似文献   

12.
Iron oxide-copper-gold deposits: an Andean view   总被引:22,自引:2,他引:20  
Iron oxide-copper-gold (IOCG) deposits, defined primarily by their elevated magnetite and/or hematite contents, constitute a broad, ill-defined clan related to a variety of tectono-magmatic settings. The youngest and, therefore, most readily understandable IOCG belt is located in the Coastal Cordillera of northern Chile and southern Peru, where it is part of a volcano-plutonic arc of Jurassic through Early Cretaceous age. The arc is characterised by voluminous tholeiitic to calc-alkaline plutonic complexes of gabbro through granodiorite composition and primitive, mantle-derived parentage. Major arc-parallel fault systems developed in response to extension and transtension induced by subduction roll-back at the retreating convergent margin. The arc crust was attenuated and subjected to high heat flow. IOCG deposits share the arc with massive magnetite deposits, the copper-deficient end-members of the IOCG clan, as well as with manto-type copper and small porphyry copper deposits to create a distinctive metallogenic signature.The IOCG deposits display close relations to the plutonic complexes and broadly coeval fault systems. Based on deposit morphology and dictated in part by lithological and structural parameters, they can be separated into several styles: veins, hydrothermal breccias, replacement mantos, calcic skarns and composite deposits that combine all or many of the preceding types. The vein deposits tend to be hosted by intrusive rocks, especially equigranular gabbrodiorite and diorite, whereas the larger, composite deposits (e.g. Candelaria-Punta del Cobre) occur within volcano-sedimentary sequences up to 2 km from pluton contacts and in intimate association with major orogen-parallel fault systems. Structurally localised IOCG deposits normally share faults and fractures with pre-mineral mafic dykes, many of dioritic composition, thereby further emphasising the close connection with mafic magmatism. The deposits formed in association with sodic, calcic and potassic alteration, either alone or in some combination, reveal evidence of an upward and outward zonation from magnetite-actinolite-apatite to specular hematite-chlorite-sericite and possess a Cu-Au-Co-Ni-As-Mo-U-(LREE) (light rare earth element) signature reminiscent of some calcic iron skarns around diorite intrusions. Scant observations suggest that massive calcite veins and, at shallower palaeodepths, extensive zones of barren pyritic feldspar-destructive alteration may be indicators of concealed IOCG deposits.The balance of evidence strongly supports a genetic connection of the central Andean IOCG deposits with gabbrodiorite to diorite magmas from which the ore fluid may have been channelled by major ductile to brittle fault systems for several kilometres vertically or perhaps even laterally. The large, composite IOCG deposits originated by ingress of the ore fluid to relatively permeable volcano-sedimentary sequences. The mafic magma may form entire plutons or, alternatively, may underplate more felsic intrusions, as witnessed by the ore-related diorite dykes, but in either case the origin of the ore fluid at greater, unobserved depths may be inferred. It is concluded that external 'basinal' fluids were not a requirement for IOCG formation in the central Andes, although metamorphic, seawater, evaporitic or meteoric fluids may have fortuitously contaminated the magmatic ore fluid locally. The proposed linkage of central Andean and probably some other IOCG deposits to oxidised dioritic magmas may be compared with the well-documented dependency of several other magmatic-hydrothermal deposit types on igneous petrochemistry. The affiliation of a spectrum of base-metal poor gold-(Bi-W-Mo) deposit styles to relatively reduced monzogranite-granodiorite intrusions may be considered as a closely analogous example.Editorial handling: B. Lehmann  相似文献   

13.
张忠义  肖文进  杨国龙  高军辉 《地质论评》2023,69(3):2023030011-2023030011
东天山晚古生代康古尔塔格构造—金矿带的中段南带开展构造控矿研究,为区域金矿定位预测与勘探提供依据。采用区域构造分析和构造解析方法,在雅满苏北部厘定出一类已发生变形改造的大型面状脆韧性—韧性剪切带,构造恢复表明,其形成于晚古生代造山早期向北的分层剪切或低角度逆冲剪切(S1//S0)作用,并作为区域金矿的一级控矿构造而成为俯冲带深源成矿流体向上运移成矿的主通道。在造山过程中递进变形的分层剪切或低角度逆冲剪切晚期、向南北向横向缩短转换阶段,伴随区域抬升和断褶作用,拆离剪切带分支断裂开始成生并向上突破,导致封闭在拆离带内运移的深源含矿流体以断层阀方式分流排泄,成矿流体沿分支断裂向上运移,在断裂上盘或上盘背斜枢纽处的低序次的断裂、破裂中聚集卸载,形成充填石英脉和交代蚀变岩型(造山型)金矿,并有时限为276. 5±2. 9Ma的石英闪长斑岩侵入产出;晚期褶皱、断裂等叠加构造则对矿床(体)破坏、改造及保存起了重要作用。  相似文献   

14.
东天山晚古生代康古尔塔格构造—金矿带的中段南带开展构造控矿研究,为区域金矿定位预测与勘探提供依据。采用区域构造分析和构造解析方法,在雅满苏北部厘定出一类已发生变形改造的大型面状脆韧性—韧性剪切带,构造恢复表明,其形成于晚古生代造山早期向北的分层剪切或低角度逆冲剪切(S1//S0)作用,并作为区域金矿的一级控矿构造而成为俯冲带深源成矿流体向上运移成矿的主通道。在造山过程中递进变形的分层剪切或低角度逆冲剪切晚期、向南北向横向缩短转换阶段,伴随区域抬升和断褶作用,拆离剪切带分支断裂开始成生并向上突破,导致封闭在拆离带内运移的深源含矿流体以断层阀方式分流排泄,成矿流体沿分支断裂向上运移,在断裂上盘或上盘背斜枢纽处的低序次的断裂、破裂中聚集卸载,形成充填石英脉和交代蚀变岩型(造山型)金矿,并有时限为276.5±2.9Ma的石英闪长斑岩侵入产出;晚期褶皱、断裂等叠加构造则对矿床(体)破坏、改造及保存起了重要作用。  相似文献   

15.
Epithermal high-sulfidation gold–copper deposits at the Chinkuashih area in northeastern Taiwan occur both within Pleistocene andesite and Miocene sedimentary rocks. Spatially associated Penshan and Shumei deposits of a major gold–copper vein, the “Main Vein”, were both mineralized along an extended normal fault zone. These deposits appear to have formed from the same original hydrothermal fluids, but in different host rock types. However, the results of trace element analyses indicate that the andesite-hosted Penshan deposit has distinctly higher ore-metal and lower LREE contents than the sediment-hosted Shumei deposit. The development of higher grade ore at Penshan deposit resulted from the presence of ferrous Fe-rich minerals in andesite that caused the deposition of a larger amount of pyrite and gold during the sulfidation–reduction reactions of acidic fluid with host rocks. Moreover, the porous–permeable silicic alteration facies of the Penshan deposit provided conduits for the circulation of ore-metal bearing fluids and the trapping of metal-bearing magmatic volatile to precipitate ore minerals. On the other hand, the higher LREE contents of the Shumei open pit reflect the low pH and abundance of mainly SO42? ion in the hydrothermal fluid perhaps because sedimentary host rocks were not able to neutralize and to reduce the acidic fluid effectively through the reactions of fluid and host rocks. Moreover, the Fe-poor host rocks have lower capacity to consume H2S and precipitate pyrite and gold. In addition, the circulation of ore-metal bearing fluids and trapping of metal-bearing magmatic volatile to precipitate ore minerals could be handicapped by the low permeability and porosity of the silicified sedimentary rocks. It is apparent from these observations that physical and chemical characteristics of host rocks are important factors in controlling the ore grade of the Chinkuashih high-sulfidation gold–copper deposits.  相似文献   

16.
The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the  相似文献   

17.
The Shilu iron ore deposit is one of the highly economically important rich iron deposits in China. Based on the results of geological field studies, ore composition, and fluid inclusion research, it can be reasonably explained that the genesis of this iron deposit is from marine volcanic sedimentary deposition, followed by regional metamorphism and later hydrothermal fluid replacement. The temperatures of regional metamorphism range from 465° to 536°C, while those of later hydrothermal replacement range from 344° to 396°C. The later hydrothermal fluids seem related to the migmatization of Zhan Xian granite which occurs near the Shilu iron ore deposit. Due to the hydrothermal replacement, the original marine volcanic deposits were replaced and the ore became rich and concentrated.  相似文献   

18.
The Lehong zinc-lead deposit is one of the new-found large Zn-Pb deposits in the Sichuan- Yunnan-Guizhou Zn-Pb poly-metallic mineralization area. The ore-bodies of the Lehong deposit are strictly controlled by structures, and the fault tectonites can be divided into four groups which include morbruk rock, cataclastic rock and tectonic breccia. The mechanical properties of the faults suggest that there are five tectonic systems formed in the Caledonian-early Hercynian, Indosinian-early Yanshanian, mid-Yanshanian, late Yanshanian and Himalayan periods, respectively. The Lehong fault and the Qiaojia-Lianfeng fault are two important ore-controlling structures which might have acted as channel ways of the ore fluids. The ores are hosted in the subordinary fracture zone, joint fracture zone and interlayer fault zones in trailing folds of the Lehong fault and the Baobaoshang syncline and Jinjiagou anticline. Hence, the Lehong deposit is a tectonic -controlled ore deposit. These research do not only lay a foundation for studying deposit genesis and ore-finding direction in the Lehong deposit, but also provides important enlightenments for the ore-finding prognosis of lead-zinc deposits in northwestern Guizhou ore concentration district. © 2018, Science Press. All right reserved.  相似文献   

19.
梅山铁矿矿浆成因的系统探讨   总被引:16,自引:1,他引:16  
袁家铮  张峰 《现代地质》1997,11(2):170-176
梅山铁矿在矿床地质特征、成矿流体来源、氧同位素的组成、实验岩石学资料以及稀土元素分布特征等方面,都充分体现了矿浆成因观点的正确性。特别是磁铁矿及其围岩中稀土元素的系统研究,为进一步探讨矿浆成因铁矿提供了新途径  相似文献   

20.
岩浆-热液系统中铁的富集机制探讨   总被引:8,自引:17,他引:8  
与岩浆-热液系统有关的铁矿类型有岩浆型钒钛磁铁矿床、玢岩铁矿、矽卡岩型铁矿和海相火山岩型铁矿,与这些铁矿有关的岩浆岩从基性-超基性、中性到中酸性岩均有,其中岩浆型钒钛磁铁矿床与基性-超基性深成侵入岩有关,形成于岩浆阶段,主要与分离结晶作用有关,但是厚大的富铁矿石的形成则可归结于原始的富铁钛苦橄质岩浆、分离结晶作用、多期次的岩浆补充以及流动分异等联合过程。钒钛磁铁矿石产于岩体下部还是上部与母岩浆的氧逸度有关:高的氧逸度导致磁铁矿早期结晶而使得其堆积于岩体的下部,相反,低氧逸度则导致低品位的浸染状矿石产于岩体的上部。虽然野外一些证据表明,元古宙斜长岩中的磷铁矿石可能是不混溶作用形成的,但是目前尚无实验证据。某些玢岩铁矿的一些磷灰石-磁铁矿石可能与闪长质岩浆同化混染了地壳中的磷导致的不混溶作用有关。除此之外,其他各类与岩浆作用有关的铁矿床均与岩浆后期的岩浆-热液作用有关。这些不同类型铁矿床的蚀变和矿化过程具有相似性,反映了它们形成过程具有相似的物理化学条件。成矿实验以及流体包裹体研究表明,岩浆-流体转换过程中出溶流体的数量以及成分受多种因素控制,其中岩浆分离结晶作用以及碳酸盐地层和膏盐层的混染可导致出溶的流体中Cl浓度的升高。早期高氧逸度环境可以使得硫以SO42-形式存在,抑制硫与铁的结合形成黄铁矿,有利于铁在早期以Cl的络合物发生迁移。大型富铁矿的形成需要一个长期稳定的流体对流循环系统,而岩浆的多期侵位或岩浆房以及在相对封闭的环境中(需要一个不透水层)一个有利于流体循环的断裂/裂隙系统是形成一个长期稳定的流体对流循环系统的必要条件。但是由于不同地质环境,流体中铁的卸载方式和位置会有明显差别,由此导致不同的矿石结构构造和不同的矿体产状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号