首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variations of the upper boundary of the ionosphere (UBI) are investigated based on three sources of information: (i) ionosonde-derived parameters: critical frequency foF2, propagation factor M3000F2, and sub-peak thickness of the bottomside electron density profile; (ii) total electron content (TEC) observations from signals of the Global Positioning System (GPS) satellites; (iii) model electron densities of the International Reference Ionosphere (IRI*) extended towards the plasmasphere. The ionospheric slab thickness is calculated as ratio of TEC to the F2 layer peak electron density, NmF2, representing a measure of thickness of electron density profile in the bottomside and topside ionosphere eliminating the plasmaspheric slab thickness of GPS-TEC with the IRI* code. The ratio of slab thickness to the real thickness in the topside ionosphere is deduced making use of a similar ratio in the bottomside ionosphere with a weight Rw. Model weight Rw is represented as a superposition of the base-functions of local time, geomagnetic latitude, solar and magnetic activity. The time-space variations of domain of convergence of the ionosphere and plasmasphere differ from an average value of UBI at ∼1000 km over the earth. Analysis for quiet monthly average conditions and during the storms (September 2002, October–November 2003, November 2004) has shown shrinking UBI altitude at daytime to 400 km. The upper ionosphere height is increased by night with an ‘ionospheric tail’ which expands from 1000 km to more than 2000 km over the earth under quiet and disturbed space weather. These effects are interposed on a trend of increasing UBI height with solar activity when both the critical frequency foF2 and the peak height hmF2 are growing during the solar cycle.  相似文献   

2.
This study presents the results of the comparison of B0, B1 and hmF2 with ΔH. B0 and B1 are parameters used in the international reference ionosphere model for the calculation of the F region bottom side profiles. The parameter ΔH obtained from the magnetic data recorded during the International Equatorial Electrojet Year (IEEY) in West Africa is used to describe the strength of the equatorial electrojet. This work covers the years 1993 and 1994, two years of low and moderate solar activity. The result shows that the electric field (E), which drives the equatorial electrojet, plays a major role in the variation of the thickness and the height of the F2 layer. However, the variation of the shape of the bottomside F2 is not sensitive to the electric field.  相似文献   

3.
NeQuick ionospheric electron density model produces the full electron density profile in the ionosphere using the F2 layer peak values (foF2 and hmF2) as anchor points. Each part of the profile is modeled using Epstein layer formalism. Simple empirical relations are used to compute the thicknesses of each semi-Epstein layer. It has been observed that when NeQuick model is used to estimate total electron content at low latitudes the modeled values tend to underestimate the observed ones. Beside the F2 peak values, the most important profile parameter is the thickness of the F2 layer bottomside. The present study focuses on NeQuick model behavior at low latitudes comparing modeled profiles parameters with the ones extracted from experimental data mostly from African and Indian sector at different levels of solar activity and different time of the day. Possible model improvements are discussed.  相似文献   

4.
A comparison of the diurnal and seasonal variations in the ionospheric equivalent slab thickness (τ) and bottomside slab thickness (B0) is presented based on the observation during high solar activities at a mid-latitude station—Wuhan (114.4°E, 30.6°N). The investigated data include foF2, hmF2, B0, B1, and TEC, and are derived from the measured ionogram and GPS receiver over Wuhan from April 1999 to March 2000. The results show that τ and B0 are highly/weakly correlated during the day/night, respectively. Furthermore, a comprehensive discussion of the relation between τ, B0, and hmF2 for geomagnetic storm events is provided in this paper.  相似文献   

5.
We analyze Jicamarca ionograms to study the quiet-condition variations in the peak electron density (NmF2), its height (hmF2), and F2-layer thickness parameter (B0) of the equatorial F2 layer during solar minimum. The sunrise peak is found in hmF2 and B0 for all months. During daytime and nighttime, the variation in the hmF2 value is mainly responsible for that in NmF2 and B0. The sunset peaks of hmF2 and B0 exist in the equinoctial months, but not in the winter months. Moreover, the observed values of hmF2, NmF2, and B0 are generally similar to the modeled values of IRI-2001.  相似文献   

6.
We use the measurements of the Jicamarca digisonde to examine the variations in F2 layer peak electron density (NmF2), its height (hmF2), and the F2 layer thickness parameter (B0) near the dip equator. The hourly ionograms during geomagnetic quiet-conditions for a 12-month period close to the maximum solar activity, April 1999–March 2000, are used to calculate the monthly averages of these parameters, for each month. The averages are compared with the International Reference Ionosphere (IRI)-2001 model values. The results show that the higher hmF2 values during daytime, associated with the upward velocity, are mainly responsible for the greater values of NmF2 and B0; while the nighttime lower hmF2, related to the downward velocity, are responsible for the smaller NmF2 and B0. For daytime, hmF2 and NmF2 are correlated with the solar activity in the equinoctial and summer months. The hmF2 and B0 peaks at sunset with an associated sharp decrease in NmF2 are presented in the equinoctial and summer months, but not in the winter months. Comparison of the measured hmF2 values with the International Radio Consultative Committee (CCIR) maps used in IRI-2001 (IRI-CCIR) reveals an IRI overestimate in hmF2 during daytime. The most significant discrepancy is that the IRI-CCIR does not model the post-sunset peak in hmF2. For the NmF2 comparison, the values obtained from both the CCIR and URSI maps are generally close to the observed values. For the B0 comparison, the highest discrepancy between the observation and the Gulyaeva option (IRI-Gulyaeva) is the location of the annual maximum for the daytime values, also the winter daytime predictions are too low. Additionally, the significant negative difference between the observation and the B0-table option (IRI-B0-table) provides a slightly better prediction, except for 0400–1000 LT when the model significantly overestimates. The post-sunset peak in B0 at some months is predicted by neither the IRI-Gulyaeva nor the IRI-B0-table options.  相似文献   

7.
This paper deals with the diurnal and seasonal variations of height of the peak electron density of the F2-layer (hmF2) derived from digital ionosonde measurements at a low–middle-latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N). Diurnal and seasonal variations of hmF2 are examined and comparisons of the observations are made with the predictions of the International Reference Ionosphere (IRI-2001) model. Our study shows that during both the moderate and low solar activity periods, the diurnal pattern of median hmF2 reveals a more or less similar trend during all the seasons with pre-sunrise and daytime peaks during winter and equinox except during summer, where the pre-sunrise peak is absent. Comparison of observed median hmF2 values with the IRI during moderate and low solar activity periods, in general, reveals an IRI overestimation in hmF2 during all the seasons for local times from about 06 LT till midnight hours except during summer for low solar activity, while outside this time period, the observed hmF2 values are close to the IRI predictions. The hmF2 representation in the IRI model does not reproduce pre-sunrise peaks occurring at about 05 LT during winter and equinox as seen in the observations during both the solar activity periods. The noontime observed median hmF2 values increase by about 10–25% from low (2004–2005) to high solar activity (2001–2002) during winter and equinox, while the IRI in the same time period and seasons shows an increase of about 10–20%. During summer, however, the observed noontime median hmF2 values show a little increase with the solar activity, as compared to the IRI with an increase of about 12%.  相似文献   

8.
本文研究赤道异常逐日起伏程度的年变化规律,发现它与太阳活动及地磁活动呈微弱的负相关,但却受到QBO的明显调制,QBO东风相起伏加大,QBO西风相起伏减小.这一事实似乎表明,太阳爆发或磁暴不是产生赤道异常逐日起伏的主要原因;而上行行星波的扰动有可能是引起赤道异常逐日起伏的主要原因.  相似文献   

9.
利用我国9个电离层观测站第21和22太阳周大约20年的foF2月中值数据,分析太阳活动和地磁活动对电离层foF2的影响,结果显示白天和夏季夜间foF2和太阳黑子数R之间存在着明显非线性关系,并且随着纬度的降低逐渐增强.当回归分析加入地磁Ap指数时,多重回归模型与实测值误差进一步减小,说明同时考虑太阳活动和地磁活动的非线性影响能够更好地描述foF2的变化.基于foF2与太阳黑子数R及地磁指数Ap之间的非线性统计关系,利用Fourier级数建立9个单站谱模型,并与国际参考电离层IRI进行了比较,精度有一定提高.  相似文献   

10.
The monthly median values of the height of peak electron density of the F2-layer (hmF2) derived from ionosonde measurements at three high latitude stations, namely Narssarssuaq (NAR) (61.2 °N, 314.6 °E), Sondrestrom (SON) (67°N, 309.1°E) and College (COL) (69.9°N, 212.2°E) were analyzed and compared with the International Reference Ionosphere (IRI-2001) model, using Comité Consultatif International des Radio communications) (CCIR and Union Radio-Scientifique Internationale (URSI) options. The analysis covers hmF2 values for March Equinox (February, March, April), June Solstice (May, June, July), September Equinox (August, September, October), and December Solstice (November, December, January), during periods of high (2000–2001), medium (2004–2005) and low (2007–2008) solar activity. Generally, the IRI-2001 prediction follow fairly well the diurnal and seasonal variation patterns of the observed values of hmF2 at all the stations. However, IRI-2001 overestimates and underestimates hmF2 at different times of the day for all solar activity periods and in all the seasons considered. The percentage deviation never exceeded 20%, except during DEC SOLS at COL and SON and during MARCH EQUI at SON during low solar activity period. For all solar activity periods considered, both the URSI and CCIR options of the IRI-2001 model give hmF2 values close to the ones measured, but the URSI option performed better than the CCIR option.  相似文献   

11.
foF2月中值太阳循环变化及单站谱模型研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用我国9个电离层观测站第21和22太阳周大约20年的foF2月中值数据,分析太阳活动和地磁活动对电离层foF2的影响,结果显示白天和夏季夜间foF2和太阳黑子数R之间存在着明显非线性关系,并且随着纬度的降低逐渐增强.当回归分析加入地磁Ap指数时,多重回归模型与实测值误差进一步减小,说明同时考虑太阳活动和地磁活动的非线性影响能够更好地描述foF2的变化.基于foF2太阳黑子数R及地磁指数Ap之间的非线性统计关系,利用Fourier 级数建立9个单站谱模型,并与国际参考电离层IRI进行了比较,精度有一定提高.  相似文献   

12.
Ionosonde measurements obtained at Tucumán are used to check the validity of the International Reference Ionosphere model to predict the maximum electron density of the F2 region (NmF2) and its height (hmF2) over this station. Data corresponding to different months and solar activity conditions are considered. CCIR and URSI options are used to model calculations. The results show that, generally, the predictions of hmF2 are better than those of NmF2. Disagreements between predicted and measured NmF2 values are observed and the consequences in the vertical total electron content modeling are stressed.  相似文献   

13.
Variations in the critical frequency of the E layer, foE, measured at Boulder and Tashkent stations located at almost coinciding geographical latitudes but at strongly different geomagnetic latitudes are analyzed. The following conclusions are drawn. (a) Late in the fall and in the winter, the foE values at these stations are distinctly different at low solar activity. This difference decreases with increasing solar activity. In other words, the longitudinal effect in the foE dependence on solar activity is significant for these conditions. (b) This effect is almost absent in summer; i.e., the difference in foE dependence on solar activity at these stations is insignificant for the given season. It has been substantiated that the dependence of the nitric oxide concentration [NO] on geomagnetic latitude, season, and solar activity is one of the main causes of this longitudinal effect.  相似文献   

14.
15.
A comparison between the modeled NmF2 and hmF2 and NmF2 and hmF2, which were observed by the Kokubunji, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders and by the middle and upper (MU) atmosphere radar, have been used to study the time-dependent response of the low-latitude ionosphere to geomagnetic forcing during a time series of geomagnetic storms from 22 to 26 April 1990. The reasonable agreement between the model results and data requires the modified equatorial meridional E×B plasma drift, the modified HWM90 wind, and the modified NRLMSISE-00 neutral densities. We found that changes in a flux of plasma into the nighttime equatorial F2-region from higher L-shells to lower L-shells caused by the meridional component of the E×B plasma drift lead to enhancements in NmF2 close to the geomagnetic equator. The equatorward wind-induced plasma drift along magnetic field lines, which cross the Earth equatorward of about 20° geomagnetic latitude in the northern hemisphere and about −19° geomagnetic latitude in the southern hemisphere, contributes to the maintenance of the F2-layer close to the geomagnetic equator. The nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess [Fejer, B.G., Scherliess, L., 1997. Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res. 102, 24047–24056] or Scherliess and Fejer [Scherliess, L., Fejer, B.G., 1999. Radar and satellite global equatorial F region vertical drift model. J. Geophys. Res. 104, 6829–6842) in combination with corrected equatorward nighttime wind-induced plasma drift along magnetic field lines in the both geomagnetic hemispheres are found to be the physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator over Manila during 22–26 April 1990. The model crest-to-trough ratios of the equatorial anomaly are used to study the relative role of the main mechanisms of the equatorial anomaly suppression for the 22–26 April 1990 geomagnetic storms. During the most part of the studied time period, a total contribution from geomagnetic storm disturbances in the neutral temperature and densities to the equatorial anomaly changes is less than that from meridional neutral winds and variations in the E×B plasma drift. It is shown that the latitudinal positions of the crests are determined by the E×B drift velocity and the neutral wind velocity.  相似文献   

16.
通过甘肃省嘉峪关台地磁场观测资料,研究嘉峪关台、瓜州台磁静日地电场日变化的时频特征波;由地电场分钟值观测数据的时序叠加残差方法,研究嘉峪关、瓜州山的地电暴变化。结果表明:(1)两台地电场静日变化以两次起伏变化为主,无相位差,但两台之间日变幅差异较大;(2)地电场分量变化与地磁场正交分量变化显著相关;地电场与地磁场日变波形不同,极值时间有差异。2个台存在很明显的高频成分,在去除了高频变化后,其优势周期也相同,从大到小依次为12 h、8 h、24 h。地磁场H分量因存在磁暴影响,故高频变化较多,在去除了磁暴影响后,其优势周期从大到小依次为24 h、12 h、8 h;(3)当电磁暴扰动剧烈时,两台可以较清晰地记录到地电暴的完整变化。在发生电磁暴时,地电场与地磁场的相关性明显降低,且不同台、不同测向之间的变化幅度也不尽相同。两台东分量E_Y暴日的日变幅较静日明显增大,磁暴期间Y分量变化率与地电场东分量E_Y观测数据显著相关,由此说明:两台日变幅的不同与台站台址电导率有关,太阳风引起的电离层活动是引起了地电场日变化主因。引起电暴的原因可能不同于引起日变化的原因,主要是两台之间及不同测向之间的浅、深层电阻率和地质构造等诸多因素的结果。  相似文献   

17.
中国低纬度地区电离层闪烁效应模式化研究   总被引:3,自引:1,他引:3       下载免费PDF全文
GPS(Global Positioning System)周跳是一种GPS信号异常现象.研究发现一定仰角以上的GPS周跳与电离层闪烁有关,是强电离层闪烁造成的GPS载波信号短时失锁现象,因此其可作为表征电离层闪烁效应的参量.本文通过分析由中国低纬度地区GPS台站原始观测数据提取的GPS周跳发生率与地方时、季节、太阳活动以及磁活动之间的关系,开展电离层闪烁效应与这几种参量之间关系的模式化研究.研究结果表明:(1)周跳发生率存在着地方时分布,发生时段主要在日落19:00LT后到午夜02:00LT之前,发生次数在22:00LT左右达到极大,然后缓慢减少,这一变化特点可以用自变量为地方时的Chapman函数形式来描述;(2)周跳发生率存在年变化特点,主要发生在年积日45~135天(春分季节)和225~315天(秋分季节),可以通过高斯函数来描述每个分季闪烁效应的变化特点;(3)可以利用太阳辐射指数F10.7作为描述周跳随太阳活动周变化的参量,根据周跳随太阳活动周的变化特点,我们使用一个以F10.7为自变量的三次函数来描述这种变化;(4)电离层闪烁与磁活动的关系比较复杂,由于大多数情况下表现为磁活动对电离层闪烁的抑制作用,在本研究中使用一个以地磁活动指数Ap为自变量的的平方根函数来拟合这种变化.  相似文献   

18.
高纬日侧电离层离子上行的地磁活动依赖性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文对比分析了太阳活动高、低年期间高纬日侧顶部电离层离子上行随地磁活动水平的变化特征.按地磁活动水平,将DMSP卫星在太阳活动高年(2000-2002年,F13和F15)及太阳活动低年(2007-2009年,F13;2007-2010年,F15)期间的SSIES离子漂移速度观测数据分为三组:地磁平静期(Kp<3),中等地磁扰动期(3 ≤ Kp < 5)和强地磁活动期(Kp ≥ 5),分别统计分析了高纬日侧顶部电离层离子上行特征的时空分布.对比分析发现:(1)太阳活动低年期间,高纬日侧电离层离子上行发生率以及上行速度峰值均是太阳活动高年的2倍多,而离子上行通量峰值只有高年的1/6-1/4;(2)在相同太阳活动条件下,地磁活动水平对日侧电离层离子上行发生率峰值的影响并不明显,但对离子上行发生率的空间分布有着显著的控制作用:电离层离子上行高发区随地磁活动向低纬度扩展,并在强地磁活动期间呈现饱和的趋势;(3)日侧顶部电离层等离子体似乎存在两个效率相当的上行区域,一个位于极尖/极隙区纬度附近,离子可沿开放磁力线上行进入磁尾;另一个位于晨侧亚极光区附近,离子沿闭合磁力线上行,有可能进入日侧等离子体层边界层.  相似文献   

19.
This paper attempts to reveal whether long-term trends in the ionosphere are reflected in the amplitude range of the geomagnetic daily variation recorded at ground level. The smooth and regular variation observed in the magnetograms on magnetically quiet days is induced by the ionospheric currents flowing in the dynamo region. So it is likely that trends in the conductivity or in the dynamics of this region could produce changes in the current densities, and consequently in the range of the geomagnetic variation. The crucial aspect is how to separate the changes produced by the geomagnetic activity itself, or by secular changes of the Earth's magnetic field, from the part of the variation produced by factors affecting trends in the ionosphere, which could have an anthropogenic origin. To investigate this, we synthesized for several geomagnetic observatories the daily ranges of the geomagnetic field components with a comprehensive model of the quiet-time, near-Earth magnetic field, and finally we removed the synthetic values from the observed ranges at those observatories. This comprehensive model accounts for contributions from Earth's core, lithosphere, ionosphere, magnetosphere and coupling currents, and, additionally, accounts for influences of main field and solar activity variations on the ionosphere. Therefore, any trend remaining in the residuals, assuming that all the contributions mentioned above are properly described and thus removed by the comprehensive model, should reflect the influence of other sources. Results, based on series of magnetic data from observatories worldwide distributed, are presented. Trends in the X and Z components are misleading, since the current system changes in form as well as in intensity, producing changes of the focus latitude in the course of a solar cycle and from one cycle to another. Some differences exist between the long-term trends in the Y component between the real and modelled ranges, suggesting that other non-direct solar causes to the amplitude changes of the solar quiet geomagnetic variation should not be ruled out. Nevertheless, the results also reflect some short-comings in the way that the comprehensive modelling accounts for the influence of the solar activity on the range of the daily geomagnetic variation.  相似文献   

20.
本文介绍了有关磁层中电离层离子起主要作用区域(地顶内区)的观测资料和磁层中电离层离子随地磁活动和太阳活动变化的观测资料,根据这些资料简单分析了上行离子的密度和通量密度及地顶的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号