首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Quaternary Science Reviews》2007,26(5-6):759-772
Quantitative reconstruction of the climatic history of the Chinese Loess Plateau is important for understanding present and past environment and climate changes in the Northern Hemisphere. Here, we reconstructed mean annual temperature (MAT) and mean annual precipitation (MAP) trends during the last 136 ka based on the analysis of phytoliths from the Weinan loess section (34°24′N, 109°30′E) near the southern part of the Loess Plateau in northern China. The reconstructions have been carried out using a Chinese phytolith–climate calibration model based on weighted averaging partial least-squares regression. A series of cold and dry events, as indicated by the reconstructed MAT and MAP, are documented in the loess during the last glacial periods, which can be temporally correlated with the North Atlantic Heinrich events. Our MAT and MAP estimations show that the coldest and/or driest period occurred at the upper part of L2 unit (Late MIS 6), where MAT dropped to ca 4.4 °C and MAP to ca 100 mm. Two other prominent cold-dry periods occurred at lower Ll-5 (ca 77–62 ka) and L1-1 (ca 23–10.5 ka) where the MAT and MAP decreased to about 6.1–6.5 °C and 150–370 mm, respectively, ca 6.6–6.2 °C and 400–200 mm lower than today. However, the highest MAT (average 14.6 °C, max. 18.1 °C) and MAP (average 757 mm, max. 1000 mm) occurred at Sl interval (MIS 5). During the interstadial of L1-4–L1-2 (MIS 3) and during the Holocene warm-wet period, the MAT was about 1–2 °C and MAP 100–150 mm higher than today in the Weinan region. The well-dated MAT and MAP reconstructions from the Chinese Loess Plateau presented in this paper are the first quantitatively reconstructed proxy record of climatic changes at the glacial–interglacial timescale that is based on phytolith data. This study also reveals a causal link between climatic instability in the Atlantic Ocean and climate variability in the Chinese Loess Plateau.  相似文献   

2.
The sediments of Lago Grande di Monticchio, southern Italy, extend continuously from the present back to the penultimate glacial stage and have an independent lamination-based chronology of high precision and accuracy. Results are presented here from a detailed palynological investigation of that part of the sediment sequence that extends from the last millennia of the penultimate glacial stage to the first stadial following the Last Interglacial (LI). Quantitative palaeovegetation and palaeoclimate reconstructions made from the palynological data are also presented. The onset of the LI is dated to 127.20 ka BP, a date that is consistent with other recent estimates; the duration of the LI is estimated to have been 17.70 ka. The palaeovegetation record indicates a transition period of 3.35 ka at the end of the penultimate glacial stage prior to the onset of the LI; no Younger Dryas-like oscillation is recorded, although the transition was interrupted by a brief event, lasting ca 250 years, during which pollen of woody taxa was reduced in abundance. Steppe vegetation dominated during the latter part of the penultimate full-glacial stage, but was replaced progressively by wooded steppe during the transition. Although the development of forest cover marked the onset of the LI, the forests were relatively open or discontinuous during the first 2.65 ka, closing progressively thereafter and generally dominating between 123.00 and 109.50 ka BP. The end of the LI is dated to 109.50 ka BP, after which date forest cover became discontinuous and wooded steppe or steppe dominated during the 1.90 ka of the subsequent stadial. As might be expected, given the location of the lake, the composition of the LI forests differs markedly from those recorded from northern Europe, as well as from those recorded at other localities in southern Europe. The palaeoclimate reconstructions reveal complex changes in seasonality, the maximum coldest month mean temperatures being between 125.70 ka BP and 123.00 ka BP, whereas maxima for both annual temperature sum and the ratio of actual to potential evapotranspiration were between 120.60 ka BP and 115.80 ka BP. Reconstructed zonal mean values for all three climatic variables in the zones in which they peak exceed values at the locality today. Comparison with other palaeovegetation records of the LI from Europe reveals that forest cover generally opened up north of the Alpine region probably ca 115 ka BP, coinciding with a marked decrease in sea surface temperatures in the Nordic Seas; this probably corresponds to a marked shift in forest composition at Lago Grande di Monticchio at 115.80 ka BP with an associated reconstructed decrease of ca 5 °C in coldest month mean temperature. Nonetheless, forest continued to dominate at Lago Grande di Monticchio until 109.50 ka BP. Such comparisons also reveal considerable complexity in the geographical and altitudinal patterns of change in palaeovegetation during the LI; such complexity is to be expected given the parallel complexity of Holocene changes. Systematic comparisons between reconstructions of palaeoclimate are hampered by a lack of consistency in approach and in the variables reconstructed. Further insight into this complexity of palaeoclimate development during the LI requires a synthesis of the available data and application of a consistent reconstruction approach that also provides robust estimates of the uncertainty in the reconstructed values.  相似文献   

3.
Improved chronological control on the penultimate advance of the Cordilleran Ice Sheet in northwest Canada (the Reid glaciation) is required for a better understanding of late Quaternary palaeoclimatic and palaeoenvironmental change in eastern Beringia. However, reliable dating of glaciation events beyond the last glacial maximum is commonly hindered by a lack of directly dateable material. In this study we (i) provide the first combined minimum and maximum age constraint on the Reid glaciation at Ash Bend, its reference locale in the Stewart River valley, northwestern Canadian Cordillera, using single-grain optically stimulated luminescence dating of quartz; and (ii) compare the timing of the Reid glaciation with other penultimate ice sheet advances in the region with the aim of establishing improved glacial reconstructions in eastern Beringia. We obtain ages of 158 ± 18 ka and 132 ± 18 ka for glaciofluvial sands overlying and underlying the Reid till, respectively. These ages indicate that the Reid advance, at its reference locale, occurred during MIS 6. This precludes an earlier MIS 8 age, and suggests that the Reid advance may have been synchronous with the Delta glaciation of central Alaska, and is likely correlative with the Mirror Creek glaciation in southern Yukon.  相似文献   

4.
Data from eastern England, Scotland, the northern North Sea and western Norway have been compiled in order to outline our current knowledge of the Middle and Late Weichselian glacial history of this region. Radiometric dates and their geological context from key sites in the region are presented and discussed. Based on the available information the following conclusions can be made: (i) Prior to 39 cal ka and most likely after ca 50 cal ka Scotland and southern Norway were extensively glaciated. Most likely the central North Sea was not glaciated at this time and grounded ice did not reach the shelf edge. (ii) During the time interval between 29 and 39 ka periods with ameliorated climate (including the Ålesund, Sandnes and Tolsta Interstadials) alternated with periods of restricted glaciation in Scotland and western Norway. (iii) Between 29 and 25 ka maximum Weichselian glaciation of the region occurred, with the Fennoscandian and British ice sheets coalescing in the central North Sea. (iv) Decoupling of the ice sheets had occurred at 25 ka, with development of a marine embayment in the northern North Sea (v) Between 22 and 19 ka glacial ice expanded westwards from Scandinavia onto the North Sea Plateau in the Tampen readvance. (vi) The last major expansion of glacial ice in the offshore areas was between 17.5 and 15.5 ka. At this time ice expanded in the north-western part of the region onto the Måløy Plateau from Norway and across Caithness and Orkney and to east of Shetland from the Moray Firth. The Norwegian Channel Ice Stream (NCIS), which drained major parts of the south-western Fennoscandian Ice Sheet, was active at several occasions between 29 and 18 ka.  相似文献   

5.
A peat cellulose δ18O record spanning around 14,000 years from the Hani peat mire in northeastern China reveals several abrupt temperature anomalies in the period from the last deglaciation through the Holocene. The timing of these anomalies coincides well with the notable cooling events recorded respectively using the GISP2 ice core and ice-rafted sediment of the North Atlantic Ocean, such as the Older Dryas, Inter-Allerød, Younger Dryas, and the nine ice-rafted debris events. The results demonstrate that this repeating pattern of abrupt temperature deterioration is not limited to the North Atlantic area at high latitude but also exists in the western North Pacific region at middle latitude. The synchronous temperature anomalies possibly are resulted from the joint effects of meltwater discharge into the North Atlantic Ocean and reduced solar activity. In the period from around 8600 to 8200 cal. yrs BP the Hani peat record shows a broad δ18O peak that may reflect compound climate signals resulting from the two kinds of forcing factors: the temperature drop related to reduced solar activity at around 8600–8250 cal. yrs BP, and the temperature anomaly attributed to the meltwater effect at around 8220 ± 70 cal. yrs BP. This result may provide palaeo-temperature evidence for existence of the sharp “8.2 k” event in the western North Pacific region. In addition, our results have revealed that in the period from the last deglaciation through the Holocene the synchronous temperature anomalies before and after the “8.2 k” event seem to be related to meltwater outflow and reduced solar activity, respectively. It is important that the all temperature anomalies—whether because of reduced solar activity in the late Holocene or from meltwater discharge in the early Holocene—are accompanied by an abrupt decline in the Indian Ocean summer monsoon and abrupt strengthening of the East Asian summer monsoon. It is likely that reduced solar activity and meltwater outflow appear to modulate Earth system changes in the same direction. The influences could be compounded. Reduced solar activity and meltwater outburst both appear to act as triggers for occurrence of the El Niño phenomenon in the equatorial Pacific Ocean, which may result in broad teleconnections between the temperature anomaly in the Northern Hemisphere and abrupt variation of the Asian monsoon.  相似文献   

6.
Pollen, chironomid, and ostracode records from a lake located at alpine treeline provide regional paleoclimate reconstructions from the southwest Yukon Territory, Canada. The pollen spectra indicate herbaceous tundra existed on the landscape from 13.6–11 ka followed by birch shrub tundra until 10 ka. Although Picea pollen dominated the assemblages after 10 ka, low pollen accumulation rates and Picea percentages indicate minimal treeline movement through the Holocene. Chironomid accumulation rates provide evidence of millennial-scale climate variability, and the chironomid community responded to rapid climate changes. Ostracodes were found in the late glacial and early Holocene, but disappeared due to chemical changes of the lake associated with changes in vegetation on the landscape. Inferred mean July air temperature, total annual precipitation, and water depth indicate a long-term cooling with increasing moisture from the late glacial through the Holocene. During the Younger Dryas (12.9–11.2 ka), cold and dry conditions prevailed. The early and mid-Holocene were warm and dry, with cool, wet conditions after 4 ka, and warm, dry conditions since the end of the Little Ice Age.  相似文献   

7.
《Quaternary Science Reviews》2003,22(5-7):541-554
The ecotone between the boreo-nemoral (hemiboreal) and the southern boreal vegetation zones constitutes the northern distributional limit of a number of thermophilous tree species in northern Europe and is, to a large extent, controlled by climatic conditions. We present a quantitative annual mean temperature reconstruction from a high-resolution pollen stratigraphy in southern boreal Finland, using a pollen-climate calibration model with a cross-validated prediction error of 0.9°C. Our model reconstructs low but steadily rising annual mean temperature from 10,700 to 9000 cal yr BP. At 8000–4500 cal yr BP reconstructed annual mean temperature reaches a period of highest values (Holocene thermal maximum) with particularly high temperatures (2.0–1.5°C higher than at present) at 8000–5800 cal yr BP. From 4500 cal yr BP to the present-day, reconstructed annual mean temperature gradually decreases by ca 1.5°C. Comparison of present results with palaeotemperature records from the Greenland ice cores, notably with the NorthGRIP δ18O record, shows marked similarities, suggesting parallel large-scale Holocene temperature trends between the North Atlantic and North European regions. The verification of the occurrence, timing, and nature of the short-term temperature fluctuations during the Holocene in the southern boreal zone in Europe requires replicate, high-resolution climate reconstructions from the region.  相似文献   

8.
Extensive coastal dunes occur in the Great Lakes region of North America, including northwestern Michigan where some are perched on high (~ 100 m) bluffs. This study focuses on such a system at Arcadia Dunes and is the first to systematically generate optical ages from stratigraphic sections containing buried soils. Dune growth began ca. 4.5 ka during the Nipissing high lake stand and continued episodically thereafter, with periods of increased sand supply at ca. 3.5 ka and ca. 1.7 ka. The most volumetrically dominant phase of dune growth began ca. 1.0 ka and continued intermittently for about 500 years. It may have begun due to the combined effects of a high lake phase, potential changes in lake hydrodynamics with final isostatic separation of Lake Superior from Lakes Michigan and Huron, and increased drought and hydrologic variability associated with the Medieval Warm Period. Thus, this latest eolian phase likely reflects multiple processes associated with Great Lakes water level and climate variability that may also explain older eolian depositional events. Comparison of Arcadia ages and calendar corrected 14C ages from previous studies indicate broad chronological agreement between events at all sites, although it appears that dune growth began later at Arcadia.  相似文献   

9.
This paper contributes to the emerging picture of late Pleistocene and Holocene environmental change in the Bonneville basin, western North America, through analysis of pollen and sediments from the Blue Lake marsh system, a major wetland area located on the western margin of the Great Salt Lake desert. Analyses of data obtained from the upper 4 m of the Blue Lake core suggest that during the latest Pleistocene, when Lake Bonneville covered the Blue Lake site, pine and sagebrush dominated terrestrial plant communities. These steppe-woodland taxa declined in abundance after ~12 cal ka BP. Wetland plant communities developed at or nearby Blue Lake by ~11.9 cal ka BP and bulrush-dominated marshes were established no later than 10.8 cal ka BP. The Blue Lake wetlands largely desiccated during a dry and warm early middle Holocene ~8.3–6.5 cal ka BP. Climatic amelioration starting ~6.5 cal ka BP is marked principally by a local return of marshes at the expense of playa and grass meadow communities, and a regional increase in sagebrush relative to other dryland shrubs. Singleleaf pinyon pine migrated into the nearby Goshute Mountains after ~8 cal ka BP. Late Holocene fluctuations include cool intervals from ~4.4 to 3.4 and ~2.7 to 1.5 cal ka BP and warmer conditions from 3.4 to 2.7 cal BP and after 1.5 cal ka BP.  相似文献   

10.
《Quaternary Science Reviews》2007,26(19-21):2316-2321
Traditional ice sheet reconstructions have suggested two distinctly different ice sheet regimes along the East Greenland continental margin during the Last Glacial Maximum (LGM): ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf at and north of Scoresby Sund. We report new 10Be ages from erratic boulders perched at 250 m a.s.l. on the Kap Brewster peninsula at the mouth of Scoresby Sund. The average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively, 17.3±2.3 ka and 15.1±1.7 ka) overlap with a period of increased sediment input to the Scoresby Sund fan (19–15 ka). The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM and add to a growing body of evidence indicating that LGM ice extended onto the outer shelf in northeast Greenland.  相似文献   

11.
《Quaternary Science Reviews》2003,22(5-7):673-689
Evidence is presented demonstrating intermediate water (∼500 m) temperature variability at ODP Hole 893A in Santa Barbara Basin during submillennial climate change (11–60 ka). Benthic δ18O oscillations are considered to result primarily from shifts in intermediate water temperature at the site. Detailed comparison of both benthic and planktonic records from the basin provide crucial evidence for differing surface and intermediate water mass temporal responses to rapid climate change. Gradual warming of intermediate water compared to abrupt cooling suggests mechanistic differences between processes controlling North Pacific Intermediate Water expansion and contraction relative to ‘southern component’ intermediate waters. Comparisons suggest intermediate water warming preceded (by 60–200 years) the most rapid interval of surface warming inferred to be associated with North Pacific atmospheric reorganization. Tropical forcing of sea level anomalies in the eastern Pacific via trade wind strength may control California Undercurrent flow (300–500 m) and be the cause of early intermediate water warming in Santa Barbara Basin.  相似文献   

12.
Hydrography of the Bay of Bengal is highly influenced by the river runoff and rainfall during the southwest monsoon. We have reconstructed δ18Osw, sea surface salinity and sea surface temperature (SST) changes in the Bay of Bengal by using paired measurements of δ18O and Mg/Ca in a planktonic foraminifera species Globigerinoides ruber from core SK218/1 in the western Bay of Bengal in order to understand the rainfall variability associated with southwest monsoon over the past 32 kyr. Our SST reconstructions reveal that Bay of Bengal was ~3.2 °C cooler during the LGM as compared to present day temperature and a ~3.5 °C rise in SST is documented from 17 to 10 ka. Both SST and δ18Osw exhibit greater amplitude fluctuations during MIS 2 which is attributable to the variability of NE monsoon rainfall and associated river discharge into the Bay of Bengal in association with strong seasonal temperature contrast. On set of strengthening phase of SW monsoon was started during Bølling/Allerød as evidenced by the low δ18Osw values ~14.7 ka. δ18Osw show consistently lower values during Holocene (with an exception around 5 ka), which suggests that the freshening of Bay of Bengal due to heavy precipitation and river discharge caused by strong SW monsoon. Results of this study signify that the maximum fluctuations of the NE monsoon rainfall during MIS 2 appear to be controlled by the strong seasonality and boundary conditions.  相似文献   

13.
The cirques of Snowdonia, North Wales were last occupied by glacier ice during the Younger Dryas Chronozone (YDC), c. 12.9–11.7 ka. New mapping presented here indicates 38 small YDC cirque glaciers formed in Snowdonia, covering a total area of 20.74 km2. Equilibrium line altitudes (ELAs) for these glaciers, calculated using an area–altitude balance ratio (AABR) approach, ranged from 380 to 837 m asl. A northeastwards rise in YDC ELAs across Snowdonia is consistent with southwesterly snow-bearing winds. Regional palaeoclimate reconstructions indicate that the YDC in North Wales was colder and drier than at present. Palaeotemperature and annual temperature range estimates, derived from published palaeoecological datasets, were used to reconstruct values of annual accumulation and ‘winter balance plus summer precipitation’ using a degree-day model (DDM) and non-linear regression function, respectively. The DDM acted as the best-estimate for stadial precipitation and yielded values between 2073 and 2687 mm a?1 (lapse rate: 0.006 °C m?1) and 1782–2470 mm a?1 (lapse rate: 0.007 °C m?1). Accounting for the potential input of windblown and avalanched snow onto former glacier surfaces, accumulation values dropped to between 1791 and 2616 mm a?1 (lapse rate: 0.006 °C m?1) and 1473–2390 mm a?1 (lapse rate: 0.007 °C m?1). The spatial pattern of stadial accumulation suggests a steep precipitation gradient and provides verification of the northeastwards rise in ELAs. Glaciers nearer the coast of North Wales were most responsive to fluctuations in climate during the YDC, responding to sea-ice enforced continentality during the coldest phases of the stadial and to abrupt warming at the end of the stadial.  相似文献   

14.
Multiple proxies from a 319-cm peat core collected from the Hudson Bay Lowlands, northern Ontario, Canada were analyzed to determine how carbon accumulation has varied as a function of paleohydrology and paleoclimate. Testate amoeba assemblages, analysis of peat composition and humification, and a pollen record from a nearby lake suggest that isostatic rebound and climate may have influenced peatland growth and carbon dynamics over the past 6700 cal yr BP. Long-term apparent rates of carbon accumulation ranged between 8.1 and 36.7 g C m? 2 yr? 1 (average = 18.9 g C m? 2 yr? 1). The highest carbon accumulation estimates were recorded prior to 5400 cal yr BP when a fen existed at this site, however following the fen-to-bog transition carbon accumulation stabilized. Carbon accumulation remained relatively constant through the Neoglacial period after 2400 cal yr BP when pollen-based paleoclimate reconstructions from a nearby lake (McAndrews et al., 1982) and reconstructions of the depth to the water table derived from testate amoeba data suggest a wetter climate. More carbon accumulated per unit time between 1000 and 600 cal yr BP, coinciding in part with the Medieval Climate Anomaly.  相似文献   

15.
The paleoclimatic record of Juréia Paleolagoon, coastal southeastern Brazil, includes cyclic and gradual changes with different intensities and frequencies through geological time, and it is controlled by astronomical, geophysical, and geological phenomena. These variations are not due to one single cause, but they result from the interaction of several factors, which act at different temporal and spatial scales. Here, we describe paleoenvironmental evidence regarding climatic and sea level changes from the last 9400 cal yr BP at the Juréia Paleolagoon — one of the main groups of protected South Atlantic ecosystems. Geochemical evidences were used to identify anomalies from multi-proxy analyses of a paleolagoon sediment core. The anomalies of centennial scale were correlated to climate and transgression–regression cycles from the Holocene period. Decadal scale anomalous oscillations in the Quaternary paleolagoon sediments occur between 9400 and 7500 cal yr BP, correlated with long- and short-term natural events, which generated high sedimentation rates, mainly between 8385 and 8375 cal yr BP (10 cm/yr). Our results suggest that a modern-day short-duration North Atlantic climatic event, such as the 8.2 ka event, could affect the environmental equilibrium in South America and intensify the South American Summer Monsoon.  相似文献   

16.
Late glacial and early Holocene summer temperatures were reconstructed based on fossil chironomid assemblages at Lake Brazi (Retezat Mountains) with a joint Norwegian–Swiss transfer function, providing an important addition to the late glacial quantitative climate reconstructions from Europe. The pattern of the late glacial temperature changes in Lake Brazi show both similarities and some differences from the NGRIP δ18O record and other European chironomid-based reconstructions. Our reconstruction indicates that at Lake Brazi (1740 m a.s.l.) summer air temperature increased by ~ 2.8°C at the Oldest Dryas/Bølling transition (GS-2/GI-1) and reached 8.1–8.7°C during the late glacial interstade. The onset of the Younger Dryas (GS-1) was characterized by a weak (< 1°C) decrease in chironomid-inferred temperatures. Similarly, at the GS-1/Holocene transition no major changes in summer temperature were recorded. In the early Holocene, summer temperature increased in two steps and reached ~ 12.0–13.3°C during the Preboreal. Two short-term cold events were detected during the early Holocene between 11,480–11,390 and 10,350–10,190 cal yr BP. The first cooling coincides with the Preboreal oscillation and shows a weak (0.7°C) temperature decrease, while the second is characterized by 1°C cooling. Both cold events coincide with cooling events in the Greenland ice core records and other European temperature reconstructions.  相似文献   

17.
Based on analysis of geothermal data from the Ural superdeep borehole (SG-4) and Onega parametric borehole, the first reconstructions of ground surface heat flux changes for the last 40 kyr have been made. The increase in heat flux during the Pleistocene-Holocene warming (20-10 ka) proceeded ~ 2 kyr earlier than the growth in surface temperature; reaching the maximum value of 0.08-0.13 W/m2 at ~ 13 ka, the heat flux was reduced. The coordinated changes in heat flux and average annual insolation at 60° N at 5-24 ka indicate that the orbital factors were the main cause of climatic changes in this period. The correlations between the changes in heat flux and CO2 content in the Antarctic ice cores and the temperature changes are analyzed.© 2014, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

18.
The extensive shoreline deposits of Lake Chilwa, southern Malawi, a shallow water body today covering 600 km2 of a basin of 7500 km2, are investigated for their record of late Quaternary highstands. OSL dating, applied to 36 samples from five sediment cores from the northern and western marginal sand ridges, reveal a highstand record spanning 44 ka. Using two different grouping methods, highstand phases are identified at 43.7–33.3 ka, 26.2–21.0 ka and 17.9–12.0 ka (total error method) or 38.4–35.5 ka, 24.3–22.3 ka, 16.2–15.1 ka and 13.5–12.7 ka (Finite Mixture Model age components) with two further discrete events recorded at 11.01 ± 0.76 ka and 8.52 ± 0.56 ka. Highstands are comparable to the timing of wet phases from other basins in East and southern Africa, demonstrating wet conditions in the region before the LGM, which was dry, and a wet Lateglacial, which commenced earlier in the southern compared to northern hemisphere in East Africa. We find no evidence that wet phases are insolation driven, but analysis of the dataset and GCM modelling experiments suggest that Heinrich events may be associated with enhanced monsoon activity in East Africa in both timing and as a possible causal mechanism.  相似文献   

19.
Forty-four boulders from moraines in two glacial valleys of Mount Erciyes (38.53°N, 35.45°E, 3917 m), central Turkey, dated with cosmogenic chlorine-36 (36Cl), indicate four periods of glacial activity in the past 22 ka (1 ka = 1000 calendar years). Last Glacial Maximum (LGM) glaciers were the most extensive, reaching 6 km in length and descending to an altitude of 2150 m above sea level. These glaciers started retreating 21.3 ± 0.9 ka (1σ) ago. They readvanced and retreated by 14.6 ± 1.2 ka ago (Lateglacial), and again by 9.3 ± 0.5 ka ago (Early Holocene). The latest advance took place 3.8 ± 0.4 ka ago (Late Holocene). Using glacier modeling together with paleoclimate proxy data from the region, we reconstructed the paleoclimate at these four discrete times. The results show that LGM climate was 8–11 °C colder than today and moisture levels were somewhat similar to modern values, with a range between 20% more and 25% less than today. The analysis of Lateglacial advance suggests that the climate was colder by 4.5–6.4 °C based on up to 1.5 times wetter conditions. The Early Holocene was 2.1–4.9 °C colder and up to twice as wet as today, while the Late Holocene was 2.4–3 °C colder and its precipitation amounts approached to similar conditions as today. Our paleoclimate reconstructions show a general trend of warming for the last 22 ka, and an increase of moisture until Early Holocene, and a decrease after that time. The recent glacier terminates at 3450 m on the northwest side of the mountain. It is a remnant from the last advance (possibly during the Little Ice Age). Repeated measurements of glacier length between 1902 and 2008 reveal a retreat rate of 4.2 m per year, which corresponds to a warming rate of 0.9–1.2 °C per century.  相似文献   

20.
We use a series of tests to evaluate two competing hypotheses about the association of climate and vegetation trends in the northeastern United States over the past 15 kyrs. First, that abrupt climate changes on the scale of centuries had little influence on long-term vegetation trends, and second, that abrupt climate changes interacted with slower climate trends to determine the regional sequence of vegetation phases. Our results support the second. Large dissimilarity between temporally close fossil pollen samples indicates large vegetation changes within 500 years across >4° of latitude at ca 13.25–12.75, 12.0–11.5, 10.5, 8.25, and 5.25 ka. The evidence of vegetation change coincides with independent isotopic and sedimentary indicators of rapid shifts in temperature and moisture balance. In several cases, abrupt changes reversed long-term vegetation trends, such as when spruce (Picea) and pine (Pinus) pollen percentages rapidly declined to the north and increased to the south at ca 13.25–12.75 and 8.25 ka respectively. Abrupt events accelerated other long-term trends, such as a regional increase in beech (Fagus) pollen percentages at 8.5–8.0 ka. The regional hemlock (Tsuga) decline at ca 5.25 ka is unique among the abrupt events, and may have been induced by high climatic variability (i.e., repeated severe droughts from 5.7 to 2.0 ka); autoregressive ecological and evolutionary processes could have maintained low hemlock abundance until ca 2.0 ka. Delayed increases in chestnut (Castanea) pollen abundance after 5.8 and 2.5 ka also illustrate the potential for multi-century climate variability to influence species' recruitment as well as mortality. Future climate changes will probably also rapidly initiate persistent vegetation change, particularly by acting as broad, regional-scale disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号