首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The distribution of epicenters of both historic earthquakes and recent seismic events in southeastern Ghana, compiled from local and teleseismic networks, show strong correlation with the Pan-African structures onshore and indicate an alignment with disruptions on seismic sections offshore. The seismic reflection sections reveal basement structures of the external zone of the Pan-African Dahomeyide orogen and these structures can be traced to offsets of shelf strata and seabottom reflectors, providing direct evidence, for the first time, for neotectonic activity that may be responsible for seismicity in the area. The deep structure of the external zone consists of moderately-dipping reflectors inferred to represent high-strain zones in the variably deformed margin of the West African craton. Taken together, the available data suggest that active tectonics in this intraplate environment may involve inversion of the Pan-African thrust structures but that this activity is apparently not related to reactivation of the nearby Romanche Fracture Zone.  相似文献   

2.
利用大陆科学钻探岩心、岩心物性测定结果、测井与VSP资料来标定地震反射体,大大提高了中国大陆科学钻探孔区地质构造解释的可信度。岩石物性测定表明,金红石榴辉岩的纵波速度极高,会产生明显的反射与重力异常。数值模拟表明,孔区三维地震拱形反射主要是由榴辉岩及切穿它们的晚期破碎带共同形成的。在CCSD主孔东南方深部重力高部位有多个这样的拱形反射,预示在地表陡倾榴辉岩的延伸方向还有多个一定规模的隐伏榴辉岩体。  相似文献   

3.
This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of 7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9–6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent characteristics of collisional tectonics resulting from the two collisional events since the Early Tertiary.  相似文献   

4.
The shallow subsurface structures of the offshore Nile Delta particularly in the southeastern Mediterranean were dealt through the interpretation of 40 two-dimensional seismic reflection lines. The interpretations of seismic reflection data indicated that the principle sedimentary processes affecting the study area include three main structural groups according to their origin and development. The first group of structures comprises of gravity-driven structures, which include slides, slumps, turbidities, and debris flow. Slides are present in three different forms on seismic sections: slide sheets, slides with scar, and wedges of slide materials. Slumps have many geometrical shapes: lenses, spoon-shaped slumps, and slumped blocks bound by growth faults. Debris flows are present as transparent unit (due to the dispersion of seismic waves at debris boundaries), whereas turbidities appear on the seismic profiles, which are formed of closely spaced parallel thin reflectors analogous to their thin stratified bedded layers. The second group of structures is syn-depositional structures, which include growth faults, and tilted and rotated fault blocks. Growth faults are listric in shape and usually dip seaward; displacements along the fault plane increase with depth. Some of these faults are incipient, and some are complicated and intersected by secondary antithetic faults. Most of the growth faults soles out basin wards and in the evaporites layer. Fault blocks are formed due to the Messinian evaporite movement vertically and horizontally due to its mobility as a consequence to the pressure resulted from the overloading of Pliocene sediment. The third group of structures comprises evaporite flow structures such as diapiric structures and graben collapse structures. The surface of the Messinian evaporites was folded during its flow as a consequence to the lateral compression acted on the mobile strata of the Messinian evaporites to form diapiric triangular structures and creates a stress zone faulting and fractures system. These conditions led to the formation of collapse structures or graben collapse structures.  相似文献   

5.
A study was carried out around the lagoon and coastal area of Setiu wetlands to determine the general characteristics and grain-size distribution of their sediments. Sediment samples were collected from 39 stations of the lagoon area and 8 stations of the coastal area, and were analyzed for their sedimentological characteristics (mean, sorting, skewness and kurtosis). The sediment mean size ranged between 0.06–2.52 and 2.12–2.69 phi (Ø) for both lagoon and coastal sea-bottom sediments, respectively. Generally, the sediments in the study area consist mostly of coarse to fine particles. The major portions of the sediment are negatively skewed. This indicates that the study area is under the influence of the rather strong wave and current action. The study also encompassed the geophysical survey that was conducted near the coastal zone of the study area. The high-resolution seismic sub-bottom profiling technique is the standard method employed to map geological features and locate structures below the surface of the seafloor. Data obtained from seismic records were used to interpret the seismic reflectors. Three main reflectors (layers), which consist of the seabed and the seabed multiple, were traced using Sonar Web Pro software, and the results showed a uniform distribution pattern for all stations surveyed. It is envisaged that this method could be an effective way to image the marine subsurface structures; thus, its use is anticipated in the higher degrees of sedimentary research and marine resource exploration.  相似文献   

6.
The passive eastern Indian margin is rich in gas hydrates, as inferred from the wide-spread occurrences of bottom-simulating reflectors (BSRs) and recovery of gas hydrate samples from various sites in the Krishna Godavari (KG) and Mahanadi (MN) basins drilled by the Expedition 01 of the Indian National Gas Hydrate Program (NGHP). The BSRs are often interpreted to mark the thermally controlled base of gas hydrate stability zone (BGHSZ). Most of the BSRs exhibit moderate to typically higher amplitudes than those from other seismic reflectors. We estimate the average geothermal gradient of ∼40°C/km and heat flow varying from 23 to 62 mW/m2 in the study area utilizing the BSR’s observed on seismic sections. Further we provide the BGHSZ where the BSR is not continuous or disturbed by local tectonics or hidden by sedimentation patterns parallel to the seafloor with a view to understand the nature of BSR.  相似文献   

7.
泌阳凹陷南部陡坡带是河南油田的重点勘探老区,其构造产状不仅陡,断层也多,叠后时间偏移难以得到较好的地震成像效果,基于Kirchhoff积分偏移方法具有运算速度快、效率高的特点,以及炮域波动方程方法能保持地震波的动力学特征,应用Kirchhoff积分偏移方法进行了偏移速度分析,建立了精细的速度模型.然后基于该模型在深度域进行了剩余速度分析以及层析成像,进一步提高了速度模型的精度. 通过分析偏移孔径、去假频参数以及延拓步长等成像处理参数对成像效果的影响,确定出最佳偏移处理参数,最后利用炮域波动方程方法对工区的三维地震数据进行了叠前偏移成像.成像结果表明,该方法能够使该区陡坡带反射层位得到较好的偏移,信噪比和横向分辨率都得到提高.  相似文献   

8.
The study is carried out to detect the subsurface structures that have geological and economic importance by interpreting the available seismic reflection data of an area estimated to be about 1,752 km2. The study comprises of the Kalar–Khanaqin and surrounding area, which is located at Zagros folded zone. Twenty-five seismic sections had been interpreted. The total length of all the seismic lines is about 650.4 km. Interpretation of the seismic data is focused on two reflectors, lower Fars and Jeribe formation. The lower Fars reflector picked at the two-way time ranging from 0.1 to 2.6 second, while the Jeribe reflector picked at the two-way time ranging from 1.0 to 2.7 second. The constructed maps denote to the existence of many closed and nose structures, in addition, to numerous fault types. All these features were detected in the area having the NW–SE trend. The depth of the lower Fars formation is ranging from 100.0 to 4,800.0 m, while the depth of the Jeribe formation is ranging from 1,700.0 to 5,000.0 m. The depth maps for the two formations also refer to the similarity of the major geological structures. These structures appear in both formations with existence of slight variation in dimensions. The closed structure no. (1) is located at the north of the study area. The nose structure no. (2) is located at the south of the area. At the west of the area, the elongated structure no. (3). The longitudinal reveres fault intersects the SW limb of the structure. The SW limb of elongated structure no. (4), intersect by longitudinal reveres fault, is located at the east of the area. There is also the semi-closed structure no. (5), which appears at the west of the area around the Qr-1 well. Most of detected faults are of reverse and thrust types having a variable amount of throws and horizontal displacements. Some seismic sections explained the existence of the decollement surface within lower Fars formation, which caused the thrusting and faulting of the overlaying beds.  相似文献   

9.
Lithospheric evolution of the Antarctic shield is one of the keystones for understanding continental growth during the Earth's evolution. Architecture of the East Antarctic craton is characterized by comparison with deep structures of the other Precambrian terrains. In this paper, we review the subsurface structure of the Lower Paleozoic metamorphic complex around the Lützow-Holm area (LHC), East Antarctica, where high-grade metamorphism occurred during the Pan-African orogenic event. LHC is considered to be one of the collision zones in the last stage of the formation of Gondwana. A geoscience program named ‘Structure and Evolution of the East Antarctic Lithosphere (SEAL)’ was carried out since 1996-1997 austral summer season as part of the Japanese Antarctic Research Expedition (JARE). Several geological and geophysical surveys were conducted including a deep seismic refraction/wide-angle reflection survey in the LHC. The main target of the SEAL seismic transect was to obtain lithospheric structure over several geological terrains from the western adjacent Achaean Napier Complex to the eastern Lower Paleozoic Yamato-Belgica Complex. The SEAL program is part of a larger deep seismic profile, LEGENDS (Lithospheric Evolution of Gondwana East iNterdisciplinary Deep Surveys) that will extend across the Pan-African belt in neighboring fragments of Gondwana.  相似文献   

10.
《Precambrian Research》2005,136(2):139-157
Early structures in the central part of the Kaoko orogenic belt of NW Namibia suggest that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. In the Western zone, early structures were overprinted by a second phase of deformation, which is associated with localization of the transcurrent Puros shear zone along the contact between the Western and Central zones. During this second phase, extensive partial melting and intrusion of ∼550 Ma granitic bodies occurred in the high-grade Western zone. In the Central zone, the second phase of deformation led to complete overprinting of the early foliation in the zone adjacent to the Puros shear zone, and to the development of kilometre-scale folds in the more distal parts. Strain partitioning into transcurrent deformation along the Puros shear zone and NE–SW oriented shortening in the Central zone is consistent with a sinistral transpressional regime during the second phase of deformation. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature Village Mylonite Zone that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone controlling the tectonic evolution of the Pan-African Kaoko belt.  相似文献   

11.
Seismic reflection profiles from three different surveys of the Cascadia forearc are interpreted using P wave velocities and relocated hypocentres, which were both derived from the first arrival travel time inversion of wide-angle seismic data and local earthquakes. The subduction decollement, which is characterized beneath the continental shelf by a reflection of 0.5 s duration, can be traced landward into a large duplex structure in the lower forearc crust near southern Vancouver Island. Beneath Vancouver Island, the roof thrust of the duplex is revealed by a 5–12 km thick zone, identified previously as the E reflectors, and the floor thrust is defined by a short duration reflection from a < 2-km-thick interface at the top of the subducting plate. We show that another zone of reflectors exists east of Vancouver Island that is approximately 8 km thick, and identified as the D reflectors. These overlie the E reflectors; together the two zones define the landward part of the duplex. The combined zones reach depths as great as 50 km. The duplex structure extends for more than 120 km perpendicular to the margin, has an along-strike extent of 80 km, and at depths between 30 km and 50 km the duplex structure correlates with a region of anomalously deep seismicity, where velocities are less than 7000 m s− 1. We suggest that these relatively low velocities indicate the presence of either crustal rocks from the oceanic plate that have been underplated to the continent or crustal rocks from the forearc that have been transported downward by subduction erosion. The absence of seismicity from within the E reflectors implies that they are significantly weaker than the overlying crust, and the reflectors may be a zone of active ductile shear. In contrast, seismicity in parts of the D reflectors can be interpreted to mean that ductile shearing no longer occurs in the landward part of the duplex. Merging of the D and E reflectors at 42–46 km depth creates reflectivity in the uppermost mantle with a vertical thickness of at least 15 km. We suggest that pervasive reflectivity in the upper mantle elsewhere beneath Puget Sound and the Strait of Georgia arises from similar shear zones.  相似文献   

12.
Sediment cores from two coastal lakes located on the island of Kamikoshiki in southwestern Japan (Lake Namakoike and Lake Kaiike) provide evidence for the response of a backbarrier beach system to episodic coastal inundation over the last 6400 years. Sub-bottom seismic surveys exhibit acoustically laminated, parallel to subparallel seismic reflectors, intermittently truncated by erosional unconformities. Sediment cores collected from targeted depocenters in both lakes contain finely laminated organic mud interbedded with coarse-grained units, with depths of coarse deposits concurrent with prominent seismic reflectors. The timing of the youngest deposit at Kamikoshiki correlates to the most recently documented breach in the barrier during a typhoon in 1951 AD. Assuming that this modern deposit provides an analog for identifying past events, paleo-typhoons may be reconstructed from layers exhibiting an increase in grain-size, a break in fine-scale stratigraphy, and elevated Sr concentrations.Periods of barrier breaching are concurrent with an increase in El Niño frequency, indicating that the El Niño/Southern Oscillation has potentially played a key role in governing typhoon variability during the mid-to-late Holocene. An inverse correlation is observed between tropical cyclone reconstructions from the western North Atlantic and the Kamikoshiki site, which may indicate an oscillating pattern in tropical cyclone activity between the western Northern Atlantic and the western North Pacific, or at least between the western Northern Atlantic and regions encompassing southern Japan. The two kamikaze typhoons which contributed to the failed Mongol invasions of Japan in 1274 AD and 1281 AD occur during a period with more frequent marine-sourced deposition at the site, suggesting that the events took place during a period of greater regional typhoon activity.  相似文献   

13.
新疆博格达山西缘米泉地区构造解析与建模   总被引:1,自引:0,他引:1  
孙自明  王毅 《现代地质》2014,28(2):300-307
新疆博格达山西缘米泉地区油气地质条件优越,但构造变形复杂,地震资料品质较差,准确落实地下地质构造是油气勘探取得突破的关键。该区地表露头出露良好,地震、非地震(MT)和钻井等资料丰富,为落实地下地质构造提供了良好的资料基础。通过对该区地表地质、地震、非地震、钻井和测井等资料的综合研究与应用分析,结合对前人构造解析与建模理论成果和主要技术方法的总结,形成了针对山前冲断带复杂构造变形区以断层相关褶皱构造解析为核心、多因素约束的综合构造解析与建模技术,建立了米泉地区多层次逆冲推覆构造模型。这项技术应用于构造特别复杂地区低成像品质地震资料的构造解释,可有效降低地震资料解释的多解性。  相似文献   

14.
Migration of zero-offset seismic sections of deep crust can be done with methods based on ray tracing. We modify the classical ray tracing migration method (RTM), introducing a consistency check to control whether back-propagated rays satisfy the condition of strict normal incidence at the migrated reflector. A synthetic test shows the effectiveness of the method; in particular the control of normal incidence allows elimination of physically inconsistent reflectors from the migrated section. Then RTM is applied to a crustal seismic profile acquired in central Italy, using a velocity model obtained from wide-angle data that reproduces the gross structures of the Apenninic crust. The lateral variation of the seismic fabric shown from the migrated section reveals the presence of coexisting extensional and compressional tectonic regimes. Kinematic diffraction modelling gives additional information about both the distribution of seismic velocities and major active geodynamic processes in the upper lithosphere. The migrated section supports the subdivision of northern Apennines in two tectonic regions: a stretched upper plate (Tuscany and northern Thyrrenian), supported by a rise of the asthenosphere, and a downwarped lower plate (Adria), subducted below the mountain belt.  相似文献   

15.
The composite airborne total intensity map of the Southern Granulite Terrain (SGT) at an average elevation of 7000' (≈ 2100 m) shows bands of bipolar regional magnetic anomalies parallel to the structural trends suggesting the distribution of mafic/ultramafic rocks that are controlled by regional structures/shear zones and thrusts in this region. The spectrum and the apparent susceptibility map computed from the observed airborne magnetic anomalies provide bands of high susceptibility zones in the upper crust associated with known shear zones/thrusts such as Transition Zone, Moyar-Bhavani and Palghat-Cauvery Shear Zones (MBSZ and PCSZ). The quantitative modelling of magnetic anomalies across Transition Zone, MBSZ and PCSZ suggest the presence of mafic rocks of susceptibility (1.5-4.0 × 10−3 CGS units) in upper crust from 8-10 km extending up to about 21-22 km, which may represent the level of Curie point geotherm as indicated by high upper mantle heat flow in this section.Two sets of paired gravity anomalies in SGT and their modelling with seismic constraints suggest gravity highs and lows to be caused by high density mafic rocks along Transition Zone and Cauvery Shear Zone (CSZ) in the upper crust at depth of 6-8 km and crustal thickening of 45-46 km south of them, respectively. High susceptibility and high density rocks (2.8 g/cm3) along these shear zones supported by high velocity, high conductivity and tectonic settings suggest lower crustal mafic/ultramafic granulite rocks thrusted along them. These signatures with lower crustal rocks of metamorphic ages of 2.6-2.5 Ga north of PCSZ and Neoproterozoic period (0.6-0.5 Ga) south of it suggest that the SGT represents mosaic of accreted crust due to compression and thrusting. These observations along with N-verging thrusts and dipping reflectors from Dharwar Craton to SGT suggest two stages of N-S directed compression: (i) between Dharwar Craton and northern block of SGT during 2.6-2.5 Ga with Transition Zone and Moyar Shear towards the west as thrust, and (ii) between northern and southern blocks of SGT with CSZ as collision zone and PCSZ as thrust during Neoproterozoic period (0.6-0.5 Ga). The latter event may even represent just a compressive phase without any collision related to Pan-African event. The proposed sutures in both these cases separate gravity highs and lows of paired gravity anomalies towards north and south, respectively. The magnetic anomalies and causative sources related to Moyar Shear, MBSZ and PCSZ join with those due to Transition Zone, Mettur and Gangavalli Shears in their eastern parts, respectively to form an arcuate-shaped diffused collision zone during 2.6-2.5 Ga.Most of the Proterozoic collision zones are highlands/plateaus but the CSZ also known as the Palghat Gap represents a low lying strip of 80-100 km width, which however, appears to be related to recent tectonic activities as indicated by high upper mantle heat flow and thin crust in this section. It is supported by low density, low velocity and high conductive layer under CSZ and seismic activity in this region as observed in case of passive rift valleys. They may be caused by asthenospheric upwarping along pre-existing faults/thrusts (MBSZ and PCSZ) due to plate tectonic forces after the collision of Indian and Eurasian plates since Miocene time.  相似文献   

16.
The large-scale POLONAISE'97 seismic experiment investigated the velocity structure of the lithosphere in the Trans-European Suture Zone (TESZ) region between the Precambrian East European Craton (EEC) and Palaeozoic Platform (PP). In the area of the Polish Basin, the P-wave velocity is very low (Vp <6.1 km/s) down to depths of 15–20 km, and the consolidated basement (Vp5.7–5.8 km/s) is 5–12 km deep. The thickness of the crust is 30 km beneath the Palaeozoic Platform, 40–45 km beneath the TESZ, and 40–50 km beneath the EEC. The compressional wave velocity of the sub-Moho mantle is >8.25 km/s in the Palaeozoic Platform and 8.1 km/s in the Precambrian Platform. Good quality record sections were obtained to the longest offsets of about 600 km from the shot points, with clear first arrivals and later phases of waves reflected/refracted in the lower lithosphere. Two-dimensional interpretation of the reversed system of travel times constrains a series of reflectors in the depth range of 50–90 km. A seismic reflector appears as a general feature at around 10 km depth below Moho in the area, independent of the actual depth to the Moho and sub-Moho seismic velocity. “Ringing reflections” are explained by relatively small-scale heterogeneities beneath the depth interval from 90 to 110 km. Qualitative interpretation of the observed wave field shows a differentiation of the reflectivity in the lower lithosphere. The seismic reflectivity of the uppermost mantle is stronger beneath the Palaeozoic Platform and TESZ than the East European Platform. The deepest interpreted seismic reflector with zone of high reflectivity may mark a change in upper mantle structure from an upper zone characterised by seismic scatterers of small vertical dimension to a lower zone with vertically larger seismic scatterers, possible caused by inclusions of partial melt.  相似文献   

17.
In the present study, seismic interpretation has been carried out over Titas structure of Bengal basin, Bangladesh to figure out its seismo-stratigraphic and structural behavior. Seven well marked reflecting horizons (R-01 to R-07) have been identified within the Neogene sedimentary sequences using 18 seismic sections and well log data. A new seismic stratigraphy of Neogene sequences has been proposed for the Titas structure ruling out the traditional lithostratigraphy. The studied structure has been divided into 3 megasequences (MS1, MS2 and MS3). Reflector R-01 and R-03 represent the tops of the megasequence 2 (MS2) and megasequence 1 (MS1) respectively. These well marked reflectors are correlated with the top of the traditional litho-groups called Tipam and Surma. Reflectors R-02 and R-04 represent acoustic impedance boundaries within MS2 and MS1 due to lithological gradation. However, R-02 and R-04 are not considered as sequence/ formation boundaries because geologically these are not well defined. Reflectors R-05, R-06 and R-07 represent top of the gasbearing zones A, B and C that belongs to MS1. All these interfaces or reflectors are anti-form with a central long crestal zone. It forms a north-south trending semi-domal sub-surface anticlinal structure having a semi-dome shaped closure. The structure is asymmetric with steeper eastern flank and gentler western flank. The crestal region is essentially plain with discontinuous reflection. The semidomal nature of the anticline is in contrast to the neighboring narrow anticlines. Structural pattern suggests its development in relation to the NE-SW trending stress field due to convergence of Indian plate with Burmese plate. Structures of the shallower and deeper reflectors are formed at different phases of structural development.  相似文献   

18.
《Gondwana Research》2003,6(3):501-511
Gravity modeling of an E-W profile across Dharwar Craton, India and Madagascar, integrated with the results of Deep Seismic Sounding (DSS) across the Dharwar Craton suggest a thick crust of 40-42 km under the eastern part of Eastern Dharwar Craton (EDC), the Western Dharwar Craton (WDC) and the central part of the Madagascar. Towards east of these blocks, the crustal thickness is reduced to 36-38 km along the Eastern Ghat Fold Belt (EGFB), shear zone between the EDC and the WDC and the east coast of Madagascar, respectively. These zones of thin crust are also characterized by high density lower crustal rocks associated with thrusts. The seismic section across Dharwar Craton shows domal- shaped reflectors in the lower crust and upper mantle under the WDC which may be related to asthenopheric upwelling during an extension phase. The occurrences of large schist belts with volcano-sedimentary sequences of marine origin of late Archean period (3.0-2.7 Ga) as rift basins in the WDC and Madagascar also suggest an extensional phase in this region during that period. It is followed by a convergence between the WDC and the EDC giving rise to collision-related shear and thrust zones between the WDC and the EDC associated with high density lower crustal rocks. The seismic section shows upwarped reflectors in the upper crust which may be related to this convergence. Eastward dipping reflectors under WDC and EDC and west verging thrusts suggest convergence from the west to the east which resulted in easterly subduction giving rise to subduction-related K-granite plutons of the EDC of 2.6-2.5 Ga. In this regard, the Closepet granite in the EDC which extends almost parallel to the shear zone between the WDC and EDC and shows an I-type calk-alkaline composition may represent relict of an island arc and the linear schist belts with bimodal volcanics of the EDC east of it might have developed as back arc rift basins. Subsequent collision between India and Antarctica along the EGFB during Middle Proterozoic, indicated by eastward dipping reflectors in the crust and the upper mantle and west verging thrust gave rise to contemporary high-grade rocks of the EGFB (1.6-1.0 Ga) and associated mafic and felsic intrusives of this belt. The part of adjoining Cuddapah basin contemporary to the EGFB towards the west consisting of marine shelf type of sediments which are highly disturbed and thickest at its contact with the EGFB may represent a peripheral foreland basin. Gravity modeling provides thickest crust of 42 km in the southern part of the WDC and does not support sharp increase in crustal thickness of 50-60 km with high velocity upper mantle as suggested from receiver function analysis. It may represent some foreign material of high density trapped in this section such as part of oceanic crust during convergence and subduction that is referred to above. It is supported from eastward dipping reflectors in lower crust and upper mantle in adjoining region.  相似文献   

19.
Multichannel seismic reflection data from the Southern Kerguelen Plateau show many dipping basement reflectors associated with volcanic flows. These reflectors are quite similar in their shape to seaward-dipping basement reflectors observed along volcanic passive margins. On the Kerguelen Plateau the sources are updip of the basement reflectors, in the presently extinct and eroded volcanoes. We suggest that the same source/reflector geometry may also apply to the seaward-dipping basement reflectors observed along passive margins. We interpret these reflectors to be the result of volcanism on the passive margin which flowed in all directions into the newly created ocean basin at an early spreading stage.  相似文献   

20.
Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between “deeper” deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and “shallower” deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号