首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A detailed palaeomagnetic study of Cretaceous age volcanic and sedimentary arc rocks from central Cuba has been carried out. Samples from 32 sites (12 localities) were subjected to detailed demagnetisation experiments. Nineteen sites from the Los Paso, Mataguá, Provincial and Cabaiguán Formations yielded high unblocking temperature, dual polarity directions of magnetisation which pass the fold tests with confidence levels of 95% or more and are considered to be primary in origin. The palaeomagnetic inclinations are equivalent to palaeolatitudes of 9°N for the Aptian, 18°N for the Albian. A synfolding remanence identified in 5 sites from the younger Hilario Formation indicates a late Cretaceous remagnetisation at a palaeolatitude of 16°N. Our results are in good agreement with previous palaeogeographic models and provide the first high quality palaeomagnetic data demonstrating the gradual northward movement of the Cretaceous Volcanic Arc throughout the Cretaceous. The declination values obtained all indicate significant and similar amounts of anticlockwise rotation from the oldest sequences studied through to the late Cretaceous remagnetisation. This rotation is most likely related to collision of the arc with the North American plate and transpressional strike slip movement along the northern margin of the Caribbean plate as it progressed eastwards into the large Proto-Caribbean basin.  相似文献   

2.
Summary Vesuvius and Stromboli are two active and extensively studied volcanoes that traditionally have been considered as having different styles of eruption, rock composition and tectonic setting. Data reveal close compositional affinities between these two volcanoes. The abundant 13–15 Ka old Stromboli leucite-tephritic rocks have radiogenic isotope signatures, and abundances and ratios of incompatible elements with the exception of Rb and K, which are identical to those of Vesuvius. The Phlegraean Fields also show close affinities to these volcanoes. The similarity between Stromboli leucite-tephrites and Vesuvius rocks cannot be the result of low pressure processes, given the differences between the two volcanoes in terms of structural features, eruptive behaviour and type of basement rocks. Instead, the observed geochemical signatures are likely to represent a primary magma composition and reveal a common homogeneous source for the two suites. The higher K and Rb contents in the Vesuvius rocks suggest either selective enrichment during magma ascent or a role for phlogopite melting during mantle anatexis. The most primitive rocks from Vesuvius, Phlegraean Fields and Stromboli reveal intermediate compositions between arc and intraplate volcanics. It is suggested that the mantle sources beneath these volcanoes consist of a mixture of intraplate- and slab-derived components. Intraplate material was probably provided by inflow of asthenosheric mantle into the wedge above the subducting Ionian Sea plate, either from the Apulian plate and/or from the Tyrrhenian Sea region. Fluids or melts released from the sinking slab and associated sediments generated metasomatic modification of the intraplate material, whose melting gave rise to the Stromboli, Vesuvius and Phlegraean Fields magmas. The present study demonstrates how comparative investigations of various volcanic centres from southern Italy allow clarification of a number of problems involving magma genesis and evolution, composition of mantle sources and geodynamic significance, which have been long debated and are difficult to solve if individual volcanoes are considered in isolation. Received July 20, 2000; revised version accepted March 19, 2001  相似文献   

3.
Over 300 samples for paleomagnetic analysis and K–Ar dating were collected from 27 sites at NW–SE and NE–SW trending dike swarms (herein, NW dikes and NE dikes, respectively) in the Koshikijima Islands, northern Ryukyu Arc. The NW dikes are Middle Miocene in age and have directions (D = ? 37.7°, I = 51.8°, α95 = 9.6°, and κ = 40.8) that are deflected westward relative to the stable eastern Asian continent. Conversely, the NE dikes, of Late Miocene age, have directions (D = 16.1°, I = 57.7°, α95 = 7.1°, and κ = 41.9) that show no such deflection. These differences are interpreted as indicating that the Koshikijima Islands underwent approximately 40° of counter-clockwise rotation during the Middle to Late Miocene. A synthesis of the paleomagnetic and structural data suggests a three-stage history of extensional deformation: (1) displacement upon normal faults (F1 faults) without vertical-axis block rotation, (2) strike-slip reactivation of F1 faults and oblique-normal displacement on NE–SW-trending faults (F2 faults) with vertical-axis block rotation, and (3) oblique-normal displacement on F2 faults without vertical-axis block rotation. Regional differences in the timing and amount of counter-clockwise vertical-axis block rotations indicate that the northern Ryukyu Arc rotated as several distinct rigid blocks.  相似文献   

4.
Two distinct groups of subduction‐related (orogenic) granitoid rocks, one Jurassic and the other Tertiary, occur in the area between the Vardar (Axios) Zone and the Rhodope Massif in northern Greece. The two groups of granitoids differ in many respects. The first group shows evolved geochemical characters, it is not associated with mafic facies, and evidence of magmatic interaction between mantle‐ and crustal‐derived melts is lacking. The second group has less evolved geochemical characters, it is associated with larger amount of mafic facies, and magmatic interaction processes between mantle‐derived and crustal melts are ubiquitous as evidenced by mafic microgranular enclaves and synplutonic dykes showing different enrichment in K2O, Ti, and incompatible elements. This kind of magmatism can be attributed to the complex geodynamic evolution of the area. In particular, we suggest that two successive subduction events related to the closure of the Vardar and the Pindos oceans, respectively, occurred in the investigated area from Late Jurassic to Tertiary. We relate the genesis of Jurassic granitoids to the first subduction event, whereas Tertiary granitoids are associated with the second subduction. Fluids released by the two subducted slabs induced metasomatic processes generating a ‘leopard skin’ mantle wedge able to produce mafic melts ranging from typical calc‐alkaline to ultra‐potassic. Such melts interacted in various amounts with crustal calc‐alkaline anatectic melts to generate the wide spectrum of Tertiary granitoids occurring in the study area. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
藏南程巴岩体副矿物研究:岩浆源区的指示   总被引:1,自引:0,他引:1  
周利敏  侯增谦  郑远川  李为 《岩石学报》2011,27(9):2786-2794
藏南程巴岩体具有埃达克岩的地球化学性质,但其形成年代、产出位置和成矿组合不同于冈底斯带成矿斑岩。利用背反射图像和电子探针成分分析发现其具有钙碱性花岗岩不常见的副矿物组合:Fe-Ti氧化物+锆石+磷灰石+榍石+独居石+钍石+氟碳铈矿+晶质铀矿+水氟碳钙钍矿,其中独居石富Th,钍石富U,独居石和钍石经富F、CO2流体交代形成氟碳铈矿和水氟碳钙钍矿。在(87Sr/86Sr)i和Th含量图解中,冈底斯带含矿斑岩与程巴岩体落在一条混合线线上,程巴岩体位于已证明受到上地壳物质或其他富集组分混染的甲马含矿斑岩和其他冈底斯含矿斑岩之间,表明程巴岩体在其源区或演化过程中也受到了富集端元的混染,但加入量少于甲马斑岩。  相似文献   

6.
Magma mingling: Tectonic and geodynamic implications   总被引:2,自引:0,他引:2  
An attempt is made to consider the tectonic and geodynamic implications of the mingling of mafic and felsic magmas, particularly, the relationships between mafic and felsic igneous rocks in composite dikes and plutons. Magma mingling develops in suprasubduction, intraplate, and collisional settings. The attributes typical of each type of mingling are discussed with special emphasis on the magma mingling of the collisional type, which is related to synmetamorphic shearing and may be regarded as a direct indicator of synorogenic collapse of collisional structural features. This phenomenon is exemplified in the Ol’khon collisional system in Siberia.  相似文献   

7.
The widespread records of mafic intrusives (both sills and dykes) are reported from the Proterozoic sedimentary basins of the Indian Shield. Amongst them, the Bijawar basin is also intruded by Paleoproterozoic (ca. 1.98−1.97 Ga) mafic sills. We provide first hand information on petrological and geochemical characteristics of these mafic sills together with a few NW-trending mafic dykes belong to the Jhansi swarm emplaced within the Bundelkhand craton, adjacent to the Bijawar basin. These Paleoproterzoic mafic intrusive rocks, i.e. sills and dykes, are believed to be integral parts of the Jhansi LIP, identified in the Bundelkhand craton. The studied mafic magmatic samples are medium- to coarse-grained and contain doleritic mineral compositions and textures. Geochemically, the mafic sill samples of the Bijawar basin, which belong to the Darguwan-Surjapura mafic sills (DSMS), are sub-alkaline basaltic-andesite to andesite in character. They are co-genetic in nature and show close geochemical similarities with a set of NW-trending mafic dykes (low-Ti) emplaced in the Bundelkhand craton. On the other hand, another set of NW-trending mafic dykes (high-Ti) of the Bundelkhand craton have distinct geochemical nature; likely to have different genetic history. The rare-earth element contents and trace-element modeling suggest that the DSMS and low-Ti dyke samples are likely to be derived from a melt generated ≥20 % melting of a shallower mantle source (spinel stability field), whereas the high-Ti dyke samples show their derivation from a melt generated through ≤15 % melting of the similar mantle source but at deeper level (garnet or garnet-spinel transition stability field); with a substantiate percentage of olivine fractionation of melts before crystallization. Their emplacement in an intracratonic tectonic regime and role of plume in the genesis of these rocks are suggested. The geochemical signature also indicates the role of an ancient (Archean) subduction event that has metasomatized the mantle before the cratonization. Their spatiotemporal correlation with other similar magmatic events of the globe indicate that the Bundelkhand craton was closer to the Karelia-Kola craton (Baltica Shield), North China craton and northern Superior craton, which could be part of the Columbia supercontinent, during its assembly.  相似文献   

8.
9.
Two large sandy seas in northern China, the Taklamakan and Badanjilin deserts, were investigated for geochemical variations of soluble salts in aeolian sands. The aim was to explore factors influencing the composition and distribution of soluble salts in aeolian sands and their environmental implications. The total concentrations of soluble salt in the aeolian sands range between 0.14 and 1.32‰, with pH ranging between 8.4 and 9.6, indicating a primary degree of salt accumulation and alkaline soil conditions in these regions. Sodium chloride and bicarbonate are the major salts. High inter-regional homogenization and small local differences in the chemical compositions and distributional patterns of salt occur in the two deserts. The spatial variations in salt content correlate with regional climatic parameters, such as precipitation and temperature. This suggests that the regional air temperature and moisture conditions of climate have a significant influence on the soluble salts in aeolian sands. The domination of sedimentation of soluble salts in aeolian sands deposited via atmospheric processes, which is heavily associated with dry deposition, is discussed. Case studies from the two deserts suggest that variations in salt content in sedimentary sequences, interlaid by aeolian and lacustrine sediments, should be interpreted with care if the aim is to reveal palaeo-environmental changes. To a certain extent, the two deserts, as inferred from the carbon-bearing salts and the alkalinity of the sandy soils, appear to have potential to provide a significant contribution to the global carbon cycle.  相似文献   

10.
This study examined the distributions and stable carbon isotopic compositions of saturated fatty acids (SaFAs) in one 300 cm long sedimentary profile, which was named as Site4B in Shenhu, northern South China Sea. The concentrations of total SaFAs in sediments ranged from 1.80 to 10.16 μg/g (μg FA/g dry sediment) and showed an even-over-odd predominance in the carbon chain of C12 to C32, mostly with n-C16 and n-C18 being the two major components. The short-chain fatty acids (ScFAs; n-C12 to n-C18) mainly from marine microorganisms had average δ13C values of −26.7‰ to −28.2‰, whereas some terrigenous-sourced long-chain fatty acids (LcFAs; n-C21 to n-C32) had average δ13C values of −29.6‰ to −34.1‰. The other LcFAs (n-C24 & n-C26  n-C28; average δ13C values are −26.1‰ to −28.0‰) as well as n-C19 and n-C20 SaFAs (average δ13C values are −29.1‰ and −29.3‰, respectively) showed a mixed signal of carbon isotope compositions.The relative bioproductivity calculation (marine vs. terrigenous) demonstrated that most of organic carbon accumulation throughout the sedimentary profile was contributed by marine organism. The high marine productivity in Shenhu, South China Sea may be related to the hydrocarbon seepage which evidenced by diapiric structures. Interestingly, there is a sever fluctuation of terrigenous inputs around the depth of 97 cm below the seafloor (bsf), probably resulting from the influence of the Dansgaard–Oeschger events and the Younger Dryas event as revealed by 14C age measurements.  相似文献   

11.
The Newania carbonatite complex of India is one of the few dolomite-dominated carbonatites of the world. Intruding into Archean basement gneisses, the rocks of the complex have undergone limited diversification and are not associated with any alkaline silicate rock. Although the magmatic nature of the complex was generally accepted, its age of emplacement had remained equivocal because of the disturbed nature of radioisotope systems. Many questions about the nature of its mantle source and mode of origin had remained unanswered because of lack of geochemical and isotopic data. Here, we present results of our effort to date the complex using 147Sm–143Nd, 207Pb–206Pb and 40Ar–39Ar dating techniques. We also present mineral chemistry, major and trace element geochemistry and Sr–Nd isotopic ratio data for these carbonatites. Our age data reveal that the complex was emplaced at ~1,473 Ma and parts of it were affected by a thermal event at ~904 Ma. The older 207Pb–206Pb ages reported here (~2.4 Ga) and by one earlier study (~2.3 Ga; Schleicher et al. Chem Geol 140:261–273, 1997) are deemed to be a result of heterogeneous incorporation of crustal Pb during the post-emplacement thermal event. The thermal event had little effect on many magmatic signatures of these rocks, such as its dolomite–magnesite–ankerite–Cr-rich magnetite–magnesio-arfvedsonite–pyrochlore assemblage, mantle like δ13C and δ18O and typical carbonatitic trace element patterns. Newania carbonatites show fractional crystallization trend from high-Mg to high-Fe through high-Ca compositions. The least fractionated dolomite carbonatites of the complex possess very high Mg# (≥80) and have similar major element oxide contents as that of primary carbonatite melts experimentally produced from peridotitic sources. In addition, lower rare earth element (and higher Sr) contents than a typical calcio-carbonatite and mantle like Nb/Ta ratios indicate that the primary magma for the complex was a magnesio-carbonatite melt and that it was derived from a carbonate bearing mantle. The Sr–Nd isotopic data suggest that the primary magma originated from a metasomatized lithospheric mantle. Trace element modelling confirms such an inference and suggests that the source was a phlogopite bearing mantle, located within the garnet stability zone.  相似文献   

12.
《Geodinamica Acta》2013,26(6):417-430
The Longi-Taormina Unit forms the “Dorsale calcaire” of the Peloritani Alpine Belt (southern Calabria-Peloritani Arc). It is made by a thick sedimentary cover of Meso-Cenozoic age overlying a Variscan weakly metamorphosed Cambrian to Carboniferous succession.

The Palaeozoic series consists of pelitic to arenaceous sediments containing layers of acidic and basic volcanics. The acidic volcanics are affected by the “Caledonian” compressional deformations and are referred to Early Ordovician. The basic rocks belong to two different volcanic cycles; the first, not dated, is ascribed to the Caledonian cycle according to its geochemical signature; whereas the second, middle-late Devonian in age, is interpreted to have formed in the framework of pre-Variscan extensional tectonics. During the Variscan Orogeny (330 Ma), the area recorded metamorphism up to subgreenschist-to-greenschist facies and two main deformation phases, marked by syn-schistose early folds (Dv1), overprinted by dominantly NW-SE trending late folds (Dv2).

During the Aquitanian, deformation related to the Alpine Orogeny led to imbrication of the Palaeozoic and Meso-Cenozoic series. The sedimentary cover was affected by a series of N090° to N130° trending folds. Detailed stratigraphical and structural investigations on the tectonic contact between the Longi-Taormina Unit, and the overlying Fondachelli Unit indicate that this structure is part of a frontal thrust ramp which developed during the Aquitanian.

Our geological and structural studies on the Cambrian to Aquitanian rocks of the Longi-Taormina Unit of the Calabria-Peloritani Arc enable to unravel the complex geodynamic history of the central-western Mediterranean area.  相似文献   

13.
Textural and compositional zoning in plagioclase phenocrysts in a sample from Parinacota volcano (Chile) was investigated using backscattered electron images and electron microprobe analysis of major and trace elements. Large (2 mm) oscillatory zoned crystals (type I) with resorption surfaces of moderate An discontinuities (Ⲓ% An) and decreasing trace-element contents (Sr, Mg, Ti) towards the rim reflect melt differentiation and turbulent convection in the main magma body. Early recharge with a low-Sr mafic magma is seen in the core. Small-scale Sr variations in the core indicate limited diffusion and thus residence and differentiation times of the magma shorter than a few thousand years. Smaller crystals (type II) with low trace-element/An ratio reflect the influence of an H2O-rich melt probably from a differentiated boundary layer. Closed-system in-situ crystallisation, mafic magma recharge and the role of a water-rich differentiated boundary layer can be distinguished from the An-trace element relationships. Crystals apparently move relatively freely between different parts and regimes in the magma chamber, evidence for "convective crystal dispersion". High-Sr type II crystals indicate an earlier input of Sr-rich mafic magma. Recharge of two distinct mafic magma types is thus identified (high-Sr and low-Sr), which must have been present - at increasing recharge rates with time - in the plumbing system throughout the volcano's history.  相似文献   

14.
对扬子陆块鄂东南地区古家山花岗闪长斑岩体进行了锆石CL显微结构分析和LA-(MC)-ICP-MS法U-Pb年龄测定及Lu-Hf同位素分析.结果表明该花岗闪长斑岩中的锆石为岩浆锆石,其晶体内部多包裹有经历变质重结晶程度不同的继承锆石.岩浆锆石206pb/238U加权平均年龄为145.4±1 Ma (MSWD=1.5),表明古家山岩体形成于晚侏罗世.岩浆锆石εHf(t)值为-4.33-17.41,Hf同位素两阶段模式年龄tDM2为1470 ~ 2294 Ma.继承锆石207Pb/206Pb年龄为1746 ~ 2959 Ma,以古元古代为主;εHf(t)值为-18.2~ 2.65,表明该地区存在太古宙-古元古代基底物质再循环.综合野外地质调查与岩石化学、锆石微区原位分析结果,古家山花岗闪长斑岩为壳源花岗岩,其源区为古元古代基底.对古家山花岗闪长斑岩体的研究表明鄂东南地区确切存在太古宙-元古代基底,为研究扬子陆块前寒武纪基底演化提供了新的信息和线索.  相似文献   

15.
冀西北张家口地区晚中生代发生了大规模的中酸性岩浆活动,通过精确的锆石 U-Pb 年代学研究,获得东坪金矿东侧北栅子碱性花岗岩的侵位年龄为(130.5±1.5) Ma,其周围出露的张家口组粗面质火山岩的喷发年龄为(127.8±3.9) Ma,为早白垩世同期岩浆作用的产物.这些岩浆岩总体属于高钾钙碱性-钾玄质系列,富碱,低 Mg#(30~43);微量元素组成上具有大离子亲石元素(LILE)、轻稀土元素(LREE)相对富集(ΣLREE/ΣHREE =14.1~23.0,(La/Yb)N =20.8~42.2), Eu 弱负异常(δEu =0.62~0.97),高场强元素(Nb、Ta、Ti和 P)不同程度亏损的地球化学特征,显示出同源岩浆演化的趋势.火山岩和花岗岩(87Sr/86Sr)i 平均值分别为0.7075和0.7078,全岩εNd(t)和锆石εHf(t)值差别明显,火山岩εNd(t)=–15.9~–13.6,εHf(t)=–18.7~–13.5,而花岗岩εNd(t)及εHf(t)则显著低于火山岩,分别为–16.8~–15.9和–24.7~–18.4.地球化学以及同位素特征表明它们是经历过强烈改造的前寒武纪下地壳与中生代底侵形成的玄武质下地壳部分熔融的产物,花岗岩岩浆主要源于经历过强烈改造的前寒武纪下地壳部分熔融,而张家口组粗面质火山岩的源区可能含有相对较多的年轻地幔物质,两者可能存在源区混合作用.北栅子碱性长石花岗岩和大面积张家口组火山岩的喷发,反映了该地区在早白垩世构造体制从挤压-伸展的转折,这种构造体制转变可能与早白垩世燕山构造带开始垮塌以及岩石圈强烈伸展减薄有关  相似文献   

16.
17.
西藏曲珍过铝花岗岩地球化学特征及地球动力学意义   总被引:4,自引:6,他引:4  
对西藏曲珍过铝花岗岩的地球化学研究表明,岩石中SiO_2、Al_2O_3和K_2O的含量均很高,贫TiO_2和Fe_2O_3;SiO_2变化为72.72%~73.34%,为铝和硅过饱和类型,属典型的含白云母过铝质花岗岩(MPG)。稀土元素总量(∑REE)为99.71×10~(-6)-132.85×10~(-6),稀土元素配分曲线显示铕负异常明显,具负铈异常。Nb、P、Ti等高场强元素具有明显的负异常,而La、Nd、Y等大离子亲石元素具有明显的正异常。过铝指数图、微量元素标准化蛛网图、岩石组合R_1-R_2图解、Rb-(Y+Nb)和Nb-Y图解均指示曲珍岩体是产生于同碰撞环境的花岗岩,其定位机制与板片俯冲、碰撞后陆内调整有关。Sr和Nd同位素组成具非常负的ε_(Nd)(t)值(-14.8~-15.4)和非常老的Nd模式年龄,表明其来源可能是古老的上地壳物质,而ε_(Sr)(t)-ε_(Nd)(t)图解也支持其上地壳来源。岩体具有较高~(87)Sr/~(86)Sr初始比值(0.72699~0.73884)特征,据此推断曲珍过铝花岗岩成因是陆壳部分熔融作用产物。岩浆源区可能以粘土岩为主,砂质岩占次要地位,是成熟陆块部分熔融作用的结果。  相似文献   

18.
Recent exploratory studies have suggested the potential of magnetic susceptibility (MS) as a rapid and low‐cost sourcing technique for lithic archaeological materials. Most commercially available susceptibility instruments, however, do not have the sensitivity to characterize weakly susceptible cherts and silicified woods. Comparative results from nine chert, two silicified wood, a porcellanite, and four obsidian sources using a highly sensitive, calibrated, and magnetically‐shielded instrument allow exploration of MS variability within and between geological sources. Color, texture, grain size, and large inclusions of cherts and obsidians are not straightforward determinants of MS. Weathering rinds (patinas) and cortex from a variety of cherts yield reduced MS values, as does a recrystalized cobble of Rio Maior flint, indicating that magnetic mineral removal during chemical weathering and diagenesis is more prevalent than staining or other mineral penetration of cobbles. In situations of multiple overlapping MS ranges, analysis is limited to discriminating cherts with high or low MS range distributions, for example in an atypicality index. Some silicified woods, obsidians, and porcellanites possess a much greater range of intersource variability, and thus sourcing analysis is more likely to be broadly successful using the susceptibility of these materials. Unexpected results from an archaeological test using a historic lithic assemblage from Azinheira, Portugal, indicate that assemblage MS may be influenced by practices of raw material selection. Understanding variability in lithic MS has relevance for the design of most source geochemical sampling, as well as the behavioral interpretations that result from such investigations. © 2002 Wiley Periodicals, Inc.  相似文献   

19.
对桂北新寨侵入岩体中的角闪花岗岩进行了详细的偏光显微镜观察和系统的矿物化学研究,并在此基础上,基于电子探针分析结果选取共生的角闪石和斜长石,估算了该岩体侵位时的温压条件、氧逸度和含水量。岩相特征观察显示,新寨角闪花岗岩中主要发育有自形、未蚀变半自形/他形和强交代半自形/他形3种主要类型的角闪石,是岩浆侵位过程中在不同深度的结晶产物或交代蚀变产物。电子探针研究结果显示,新寨花岗岩中角闪石成分变化较大,且在岩浆侵位过程中呈现出Al2O3、FeOT、Na2O、TiO2、K2O含量降低但MgO、SiO2含量升高的趋势。矿物温压计估算结果显示自形和未蚀变半自形/他形角闪石的结晶压力分别为0.28~0.30 GPa和0.19~0.26 GPa,对应的结晶温度分别为767~783℃和740~764℃。温压计算结果表明新寨岩体初始侵位深度应大于11.3 km,且侵位过程是一个近乎等温降压的过程,变压结晶作用为新寨侵入体持续侵位过程中的主要结晶方式。角...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号