首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Koetong Suite of Silurian, 2-mica granitoids was derived from a metasedimentary source and emplaced into Ordovician sediments and metasediments along the eastern margin of the Western Metamorphic Belt of South-eastern Australia. Whole-rock geochemical considerations preclude derivation of the magmas represented by the granitoids from exposed Ordovician metasediments. The magmas were generated by partial melting of material similar in composition to garnet-cordierite gneisses exposed in the adjacent metamorphic belt. Melting at pressures in excess of 5 Kb and temperatures about 750°C produced peraluminous magmas and, when the degree of partial melting approached 25–30%, these magmas became mobile and moved vertically into the overlying Ordovician sediments. During movement from the source region to the zone of emplacement, separation of the melt and refractory residue components of the magma resulted in a range of compositions so that whole-rock analyses of the granitoids are linearly related on major and trace element variation diagrams. Processes such as crystal fractionation and crystal accumulation may have operated locally. The magmas were largely composed of solid material throughout their emplacement histories and the amount of melt may not have exceeded 30–45% at any stage. Metasedimentary inclusions are a reflection of source heterogeneity.After emplacement of the magmas, in situ crystallization of a relatively anhydrous assemblage of minerals led to water contents in residual, intercrystalline, melts sufficiently high for muscovite to begin crystallization at pressures around 4 Kb. Subsequent saturation of intercrystalline residual melt and loss of the resultant volatile phase caused the development of eutectoid intergrowths involving muscovitebiotite-quartz and alkali feldspar.  相似文献   

2.
The Marquesas Archipelago, a volcanic chain in French Polynesia (south-central Pacific Ocean), is predominantly composed of alkalic, transitional and tholeiitic basalts. The variation trends in these intraplate basaltic rocks imply that the magmas were derived from different upper mantle sources. Model calculations using the total inverse method show that the peridotite source of most Marquesas basalts was enriched in incompatible elements compared to a primordial mantle and had higher than chondritic ratios of several elements such as La/Yb, Ti/V and P/Ce. A metasomatic enrichment event is suggested by the sequence of element enrichment in the source relative to the primordial mantle (Ba>Nb>La>Ce>Sr>Sm>Eu> Zr>Hf>Ti>Y>Yb). On the other hand, some lavas including tholeiites of Ua Pou and alkalic basalts of Hiva Oa, were probably derived from relatively depleted upper mantle. In some islands such as Hatutu, the different types of basalts were generated from sources with rather similar compositions. The residual phases of the Marquesas magmas included garnet. The sources of these magmas were similar in trace element chemistry to the oceanic mantle below Hawaii.  相似文献   

3.
The Wadi Dabr intrusive complex, west of Mersa-Alam, Eastern Desert, Egypt ranges in composition from gabbro to diorite, quartz diorite and tonalite. The gabbroic rocks include pyroxene-horn blend e gabbro, hornblende gabbro, quartz-hornblende gabbro, metagabbro and amphibolite. Mineral chemistry data for the gabbroic rocks indicate that the composition of clinopyroxenes ranges from diopside to augite and the corresponding magma is equivalent to a volcanic-arc basalt. Plagioclase cores range from An75 to An34 for the gabbroic varieties, except for the metagabbro which has An 11–18. The brown amphiboles are primary phases and classified as calcic amphiboles, which range from tschermakitic hornblende to magnesiohornblende. Green hornblende and actinolite are secondary phases. Hornblende barometry and hornblende-plagioclase themometry for the gabbroic rocks estimate crystallisation conditions of 2–5 kb and 885–716°C.The intrusive rocks cover an extensive silica range (47.86–72.54 wt%) and do not exhibit simple straight-line variation on Harker diagrams for many elements (e.g. TiO2, Al2O3, FeO*, MgP, CaO, P2O5, Cr, Ni, V, Sr, Zr and Y). Most of these elements exhibit two geochemical trends suggesting two magma sources.The gabbroic rocks are relatively enriched in large ion lithophile elements (K, Rb, Sr and Ba) and depleted in high field strength elements (Nb, Zr, Ti and Y) which suggest subduction-related magma. Rare earth element (REE) data demonstrate that the gabbroic rocks have a slight enrichment of light REE [(La/Yb)N=2.67−3.91] and depletion of heavy REE ((Tb/Yb)N=1.42−1.47], which suggest the parent magma was of relatively primitive mantle source.The diorites and tonalites are clearly calc-alkaline and have negative anomalies of Nb, Zr, and Y which also suggest subduction-related magma. They are related to continental trondhjemites in terms of Rb---Sr, K---Na---Ca, and to volcanic-arc granites in terms of Rb---and Nb---Y.The Wadi Dabr intrusive complex is analogous to intrusions emplaced in immature ensimatic island-arcs and represents a mixture of mantle (gabbroic rocks) and crustal fusion products (diorites and tonalites) modified by fractional processes.  相似文献   

4.
5.
6.
The paper reports the results of SIMS and SEM-EDS study of rock-forming minerals from melt pockets in the central part of a spinel peridotite xenolith taken from Quaternary alkaline basalts of Sverre Volcano in the northwestern part of West Spitsbergen Island. Olivine and clinopyroxene are analyzed to trace changes related to the metasomatic interaction between spinel lherzolite and a carbonate melt with formation of corresponding secondary minerals and silicate glass. It is established that the metasomatic interaction of the carbonate melt with minerals of host spinel lherzolite is accompanied by partial recrystallization of olivine and clinopyroxene, or crystallization of the second generation of these minerals. Percolating carbonate melt caused significant changes in the major, trace, and rare-earth element composition of the considered minerals, thus placing constraints on the use of the composition of these minerals for calculation of PT parameters, estimating equilibrium, and modeling petrological processes in mantle.  相似文献   

7.
The Lewisian complex of the Scourie-Badcall area is composed predominantly of banded tonalitic gneiss which intrudes layered gabbro-ultramafic complexes. Intrusive into both gabbro and tonalitic gneiss are homogeneous acid sheets which are trondhjemitic to granitic in composition. All rocks were subjected to granulite facies metamorphism. Smooth continuous trends on chemical variation diagrams suggest that the evolution of these rocks was dominated by fractional crystallisation. A scheme is proposed whereby a tonalitic melt was parental to trondhjemite and granite. Variation within tonalites was a function of the fractional crystallisation of hornblende and plagioclase, and trondhjemite was derived from tonalite by the fractional crystallisation of hornblende and/or plagioclase. Granite and granodiorite represent residual liquids which evolved along the quartz-feldspar cotectic surface; they were derived by the fractional crystallisation of plagioclase from a trondhjemite liquid. Some trondhjemitic sheets are quartz-plagioclase residues from which a granitic melt was removed. The associated gabbros and ultramafic rocks are not directly related to the proposed fractional crystallisation scheme and are not crystal residues removed from the tonalitic melt. Tonalites were probably derived from a basaltic source by partial melting or fractional crystallisation with either hornblende and/or garnet as residual phases.  相似文献   

8.
Reunion Island consists of an olivine-basalt shield capped by a series of flows and intrusives ranging from hawaiite through trachyte. Eleven rocks representing the total compositional sequence have been analyzed for U, Th and REE.Eight of the rocks (group 1) have positive-slope, parallel, chondrite-normalized REE fractionation patterns. Using a computer model, the major element compositions of group 1 whole rocks and observed phenocrysts were used to predict the crystallization histories of increasingly residual liquids, and allowed semi-quantitative verification of origin by fractional crystallization of the olivine-basalt parent magma. Results were combined with mineral-liquid distribution coefficient data to predict trace element abundances, and existing data on Cr, Ni, Sr and Ba were also successfully incorporated in the model.The remaining three rocks (group 2) have nonuniform positive-slope REE fractionation patterns not parallel to group 1 patterns. Rare earth fractionation in a syenite is explained by partial melting of a source rich in clinopyroxene and/or hornblende. The other two rocks of group 2 are explained as hybrids resulting from mixing of syenite and magmas of group 1.  相似文献   

9.
During the last glaciation of northern Ellesmere Island many areas remained ice-free. A caribou antler from deglacial-marine sediments in Clements Markham Inlet dates 8,415 ± 135 B.P. (S-2501). If locally derived it places caribou at the northern limit of their contemporary range at the onset of deglaciation in this area. Immediately to the south, on the Hazen Plateau, ice remained at its limit until c . 8,000 B.P. Therefore, this antler may indicate the presence of caribou during full glacial time.  相似文献   

10.
Summary Petrographic and geochemical data are presented for some ouachitites from the Schirmacher Oasis. The studied dike intruded into the metamorphic basement of the East Antarctic craton. The ouachitite samples contain substantial amounts of zoned phlogopite and diopsidic to salitic pyroxene as phenocrysts. K-rich nepheline is the predominant phase of the matrix. The rocks are characterized by low SiO2 concentrations (up to 36.5 wt.%), low mg# and high abundances of Al2O3, alkalis and volatiles. Trace element compositions of the Schirmacher ouachitites differ from those of ultramafic lamprophyres from other regions in that they contain significantly lower Cr and Ni concentrations and relatively low enrichments in LILE and LREE. The studied rocks have low143Nd/144Nd and enhanced87Sr/86Sr ratios. Pb isotope compositions of the ouachitites closely resemble those of MORB. The 18O values range between 4.1 and 4.70/00 which may be due to interactions with meteoric water. Because the Schirmacher ouachitites are only represented by a few samples it is impossible to discuss the petrogenesis of this magma. However, according to trace element and isotopic characteristics, it can be ruled out that Schirmacher ouachitites and associated minettes (documented inHoch, 1997;Hoch andTobschall, 1998) were derived from the same mantle reservoir.
Geochemie und Petrologie von Ouachititen aus der Schirmacher Oase, Ostantarktika
Zusammenfassung In dieser Arbeit werden petrologische und geochemische Daten von Ouachititen aus der Schirmacher Oase vorgestellt. Der beprobte Gang intrudierte in das metamorphe Basement des ostantarktischen Kratons. Zonierte Phlogopite und diopsidische bis salitische Pyroxene sind die häufigsten mafischen Einsprenglinge. K-reiche Nepheline bilden die Hauptmineralphase der Grundmasse. Charakteristisch für die Ouachititproben sind niedrige SiO2-Konzentrationen (bis 36.5 Gew.%) und mg#, aber hohe Gehalte an Al2O3 Alkalien und volatilen Bestandteilen. Die Spurenelementzusammensetzung der Schirmacher Ouachitite unterscheidet sich von UML-Proben aus anderen Regionen durch ihre extrem geringen Cr- und Ni-Konzentrationen und die vergleichsweise niedrigen Anreicherungen an LILE und LREE. Die bearbeiteten Gesteine zeigen niedrige143Nd/144Nd- und erhöhte87Sr/86Sr-Verhältnisse. Die Pb-Isotopie der Ouachitite entspricht der von MORB. 6180-Werte variieren zwischen 4.1 und 4.70/00, was auf eine eventuelle Beeinflussung durch meteorische Wässer hindeutet. Da von den Schirmacher Ouachititen nur wenige Proben für eine Bearbeitung zur Verfügung standen, ist es nicht möglich, die Petrogenese des Magmas zu diskutieren. Aber aufgrund der Spurenelement- und Isotopensignaturen kann ein gemeinsames Mantelreservoir der Schirmacher Ouachitite und Minette (beschrieben inHoch, 1997;Hoch undTobschall, 1998) ausgeschlossen werden.


With 6 Figures  相似文献   

11.
In the southern Gregory Rift valley a series of transitional basalt, ferrobasalt, and benmoreite flows (1.65–1.4 Myr) is overlain by flood trachyte lavas (1.3–0.9 Myr). Mass balance calculations for major element compositions of rocks of this suite and their phenocrysts and microphenocrysts suggest that the ferrobasalts and benmoreites formed from magma resembling the most primitive basalt by closed system fractionation of plagioclase, clinopyroxene, olivine, titanomagnetite, and apatite. The trachytes formed from evolved magmas largely by alkali feldspar fractionation. Estimates of phenocryst and liquid densities and Rayleigh-law modelling of trace element contents support these conclusions. From Rayleigh-law modelling, we derived a set of effective distribution coefficients. Partial melting of crustal rocks or volatile transfer processes had no significant effect on the petrogenesis of this suite. The duration of the eruptive cycle, cooling time calculations, and mass balance calculations suggest that fractionation occurred in a magma reservoir with volume of at least 3 × 104 km3 during an interval of about 0.8 Myr. Temperatures during fractionation probably ranged from about 1200 °C to 900 °C, and pressures may have been roughly 5 to 8 Kb. We suggest that rift development was accompanied by large-scale injection of basaltic magma and dilation of the crust, extensive fractionation, preferential eruption of low-density and fluid trachytic flood lavas, and by several episodes of normal faulting.  相似文献   

12.
An AMS radiocarbon-dated pollen record from a peat deposit on Mitkof Island, southeastern Alaska provides a vegetation history spanning ∼12,900 cal yr BP to the present. Late Wisconsin glaciers covered the entire island; deglaciation occurred > 15,400 cal yr BP. The earliest known vegetation to develop on the island (∼12,900 cal yr BP) was pine woodland (Pinus contorta) with alder (Alnus), sedges (Cyperaceae) and ferns (Polypodiaceae type). By ∼12,240 cal yr BP, Sitka spruce (Picea sitchensis) began to colonize the island while pine woodland declined. By ∼11,200 cal yr BP, mountain hemlock (Tsuga mertensiana) began to spread across the island. Sitka spruce-mountain hemlock forests dominated the lowland landscapes of the island until ∼10,180 cal yr BP, when western hemlock (Tsuga heterophylla) began to colonize, and soon became the dominant tree species. Rising percentages of pine, sedge, and sphagnum after ∼7100 cal yr BP may reflect an expansion of peat bog habitats as regional climate began to shift to cooler, wetter conditions. A decline in alders at that time suggests that coastal forests had spread into the island's uplands, replacing large areas of alder thickets. Cedars (Chamaecyparis nootkatensis, Thuja plicata) appeared on Mitkof Island during the late Holocene.  相似文献   

13.
Acta Geochimica - Quartzites are widespread within Earth’s lithosphere, but their highly pure varieties occur quite infrequently. With the development of alternative energy sources, including...  相似文献   

14.
Detailed geochemical and geochronological study of Hercynian granites and related rocks in Portugal and W Spain (the Ibergranite Project) has inspired new ideas about their origin: formerly regarded as the sole products of crustal anatexis, trace element petrology shows descent by crystal fractionation from mantle-derived parent magmas of basic composition.Four main groups are distinguished: gabbros, tonalites (with minor diorites), granites (including granodiorites) and leucogranites. There are three principal stages of fractionation. First, by labradorite and pyroxene fractionation, gabbroic magmas yield tonalitic rest magmas, as intercumulus liquids. This is witnessed by the occurrence of gabbro plutons — large in S Portugal, small in N Portugal -, of gabbro inclusions in tonalites and granites and of labradorite and pyroxene relics in the andesines and hornblendes, resp., of the tonalites. The tonalites are hornblende-biotite-andesine-quartz rocks containing varying amounts of potash feldspar. Fractionation of hornblende, biotite and andesine yields granitic magmas. Lastly, the granite magmas by fractionation of biotite, oligoclase, potash feldspar and quartz produce leucogranitic liquids in which Rb, U, Sn, W, Ta, Nb, P and Ga are enriched and Ba, Sr, Zr, light REE, Y, Th, Ti and V are depleted.The role of crustal contamination and recyling is discussed.
Zusammenfassung Ausführliche geochemische und geochronologische Untersuchungen an herzynischen Graniten und assoziierten Gesteinen in Portugal und Westspanien im Rahmen des Ibergranit-Projektes lie\en neue Ideen zu ihrer Genese aufkommen: obwohl sie bisher als Produkte der krustalen Anatexis betrachtet wurden, weist die Spurenelement-Petrologie auf eine Entstehung infolge Kristallisationsfraktionierung basischer Stamm-Magmen, die im oberen Erdmantel gebildet wurden.Es werden vier Hauptgruppen unterschieden; Gabbros, Tonalite (und untergeordnet Diorite), Granite (einschlie\lich Granodiorite) und Leucogranite. Die Fraktionierung lä\t sich in drei Stufen unterteilen: Zuerst trennen Schmelzen gabbroider Zusammensetzung durch Fraktionierung von Labradorit, Pyroxen und Olivin tonalitische Restmagmen als Interkumulus-Schmelzen ab. Zeugen dafür sind Vorkommen von Gabbroplutonen, die in Südportugal gro\e, in Nordportugal kleine Ausdehnung zeigen, und weiterhin das Auftreten von Gabbro-Einschlüssen in Tonaliten und Graniten sowie von Labradorit- und Pyroxen-Relikten in den Andesinen bzw. Hornblenden der Tonalite. Die Tonalite sind Hornblende-Biotit-Andesin-Quarz-Gesteine, die wechselnde Mengen Kalifeldspat führen. Durch die Fraktionierung von Hornblende, Biotit und Andesin erzeugen die Tonalitmagmen granitische Schmelzen. Zuletzt werden Leukogranitschmelzen durch Fraktionierung von Biotit, Oligoklas, Kalifeldspat und Quarz aus Granitmagmen gebildet, wobei Anreicherung an Rb, U, Sn, W, Ta, Nb, P und Ga auftritt sowie Abreicherung an Ba, Sr, Zr leichten Seltenen Erdelementen, Y, Th, Ti und V.Zusätzlich wird auf die Rolle krustaler Kontamination und von Recycling-Prozessen eingegangen.

Résumé L'étude géochimique et géochronologique détaillée des granites hercyniens et roches associées au Portugal et en Espagne occidentale (le Projet Ibergranite) a inspiré des idées nouvelles sur leur genèse: alors qu'ils étaient jusqu'ici considérés comme provenant uniquement de la fusion de matériel crustal, la géochimie des éléments en trace montre une différenciation par cristallisation fractionnée à partir de magmas basiques d'origine mantélique.On peut distinguer quatre groupes principaux: gabbros, tonalités (avec diorites subordonnées), granites (y compris granodiorites) et leucogranites. Le fractionnement se divise en trois stades principaux. D'abord, par fractionnement de labrador, de pyroxene et d'olivine, les magmas gabbroÏques produisent des magmas résiduels tonalitiques, disposés en liquides inter-cumulat. En témoignent: la présence de plutons de gabbrode dimensions considérables dans le sud du Portugal et petites dans le Nord-, les enclaves gabbroÏques dans les tonalites et granites, les reliques de labrador et pyroxene dans les andesites et de hornblende dans les tonalites. Les tonalites sont des roches à hornblende, biotite, andésine, quartz, accompagnés de feldspath potassique en quantité variable. En second lieu, le fractionnement de hornblende, de biotite et d'andésine conduit aux magmas granitiques. Finalement, par fractionnement de biotite, d'oligoclase, de feldspath potassique et de quartz, les magmas granitiques donnent des magmas leucogranitiques enrichis en Rb, U, Sn, W, Ta, Nb, P, Ga et appauvris en Ba, Sr, Zr, terres rares légères, Y, Th, Ti et V.Le rÔle de la contamination crustale et du recyclage est discuté.

, - , : , , , , . : , ( ), ( ) . : , , , . , , , , . — , , , . , . , , , Rb, U, Sn, W, Ta, Nb, P Ga , a Ba, Sr, Zr, , Y, Th, Ti V .B Recycling'a.
  相似文献   

15.
The Mullipallam creek in Muthupet mangroves region is the only E-W trending coastal strip in the SE coast of India and is very important, as the mangrove acts as a barrier to natural diasters. Natural, anthropogenic signals and accumulation of elements were made by collecting sediment samples at various depths in a core. All sediments were analyzed for carbonates (CaCO3), organic carbon (OC), major (Si, Al, Fe, Na, K, Ca, Mg, P), and trace (Mn, Cr, Cu, Ni, Co, Pb, Zn). Normalization with Al values has been done for all the major and trace elements and enrichment factors have been calculated. The calculated enrichment factors and comparison indicate that the trace metals (especially Pb) are enriched mainly due to the external (anthropogenic) activities in the land as well as in the coastal zone (Palk Strait).  相似文献   

16.
17.
新疆东天山彩中花岗岩体锆石SHRIMP年龄及地球化学特征   总被引:15,自引:1,他引:15  
对新疆东天山康古尔塔格地区彩霞山一带的彩中岩体黑云母二长花岗岩进行了SHRIMP锆石U-Pb定年、主量和微量元素、Nd-Sr同位素研究。锆石206Pb/238U比值平均加权年龄为316±4(2σ)Ma,表明彩中岩体形成于石炭纪中期,因而修正了前人关于“早二叠世晚期侵入体”的时代划分方案。岩体的主、微量元素研究表明,彩中岩体为铝弱过饱和型钙碱性系列花岗岩,形成于岛弧环境。彩中黑云母二长花岗岩具有高的εNd(t)值(+8.5~+7.4)和低的87Sr/86Sr同位素比值(ISr=0.7034~0.7036),表明其物质来源为亏损的地幔源区。低的Nd模式年龄(TDM=0.38~0.47Ga),暗示其源区物质基本上未受到古老大陆地壳物质的混染。上述特征表明彩中花岗岩与东西准噶尔造山带的花岗岩类有可比性。  相似文献   

18.
The anorogenic igneous rocks of Mull consist essentially of a lava pile of predominantly basaltic composition, cut by an intrusive complex. The basement consists of Precambrian metamorphic rocks of the Moine Series underlain by Lewisian gneiss. The intrusive complex contains a significant proportion of granitic intrusions which can be ascribed to three successive centres of activity, Centres 1–3. We report new major and trace element, including rare earth element analyses, 87Sr/86Sr ratios and 18O values for a comprehensive collection of granitic rocks from the 3 centres. The 18O values range from +4 to –6 indicating variable extent of interaction between the rocks and heated meteoric groundwater. However, correlations of 18O with other major and trace element data and 87Sr/86Sr ratios are uniformly low, apart from Fe2O3. It is thus unlikely that the interaction of the rocks with meteoric water has systematically altered the chemical (including Sr isotope) characteristics. The chemical and Sr isotope data reflect magmatic values and can therefore be used to comment on the petrogenesis of the granitic rocks.These data indicate that there are important differences between granitic rocks of the centres with Centre 1 forming one distinct group and Centres 2 and 3 a different group. For a given SiO2 value, the Centre 1 granites have higher Na2O, MgO, P2O5, TiO2, Sr, and V and lower Al2O3, MnO, Zn, Zr, and Y than those of Centres 2 and 3. In addition, the Centre 1 granites have lower REE contents and higher CeN/YbN ratios than those of Centres 2 and 3. Granites from all three centres have Eu anomalies, those of Centre 3 being generally greater (Eu/Eu* = 0.66–0.10). Finally, there are important Sr isotope distinctions between the three Centres; calculated initial 87Sr/86Sr ratios for the Centre 1 granites (using 58.2Ma) range between 0.71366–0.71646 (average 0.71530) and have a general correlation of 87Sr/86Sr with 87Rb/86Sr. The initial 87Sr/86Sr ratios of the Centre 2 granites range from 0.70663 to 0.70868, but the 87Sr/86Sr data do not define an isochron. Finally, data for the Centre 3 granites define a Rb-Sr wholerock isochron with an age of 58.2±2.5 Ma and an initial 87Sr/86Sr ratio of 0.71003 ±36.Both the chemical trends and isotopic data for the Mull granites can be interpreted in terms of contrasted origins for the granitic rocks of the two groups. The relatively primitive chemical composition and high initial 87Sr/86Sr ratios of the Centre 1 granites indicate a substantial crustal contribution and we consider that these granites formed by a combination of partial melting of Lewisian basement together with some magma derived by fractional crystallization of basaltic magma. In contrast, the chemical and isotope data for the Centre 2 and 3 granites are consistent with formation dominantly by fractional crystallization of basaltic magma, together with a relatively small proportion of crustal contamination. A model is proposed which emphasises that acid magmatism in Mull is a consequence of the rise and crystallization of basic magma into continental crust. Granite magma has formed both by partial melting and by fractional crystallization and both of these events probably occurred under open system conditions.With oxygen isotope analyses by J.J. Durham, Geochemical Division, Institute of Geological Sciences, 64–78 Grays Inn Road, London, WC1X 8NG, England  相似文献   

19.
New mineral and bulk-rock analyses, as well as Nd, Sr and Pbisotope compositions are presented for lavas from Grande Comore,Moheli and Mayotte, thru of the four main islands of the ComoresArchipelago in the western Indian Ocean, and these data an usedto evaluate the petrogenesis, evolution and mantle source regioncharacteristics of Comorean lavas. The typically silica-undersaturated,alkaline lavas from all three islands can be grouped into twodistinct types: La Grille-type (LGT) lavas, which display strongrelative depletions in K, and Karthala-type (KT) lavas, whichdo not. With the exception of the lavas erupted by La Grillevolcano on Grande Comore, which exhibit the petrographic andgeochemical characteristics expected of primary mantle-derivedmagmas, all Comorean lavas analysed have experienced compositionalmodifications after they segregated from their source regions.Much of this variation can be explained quantitatively by fractionalcrystallization processes dominated by the fractionation ofolivineand clinopyroxene. Semi-quantitative modelling shows that theconsistent and fundamental difference in composition betweenK-depleted LGT lavas and normal KT lavas can be attributed topartial melting processes, provided amphibole is a residualmantle phase after extraction of LGT magmas at low degrees ofmelting. Low absolute abundances of the heavy rare earth elementsin LGT magmas are interpreted to reflect partial melting withinthe garnet stability field In contrast, KT magmas, which donot show relative K depletions, are considered to be the productsof somewhat larger degrees of partial melting of an amphibolefreesource at comparatively shallower depths. Whereas the Nd andSr isotopic compositions of Comorean lavas (which show a significantrange: 87Sr/86Sr = 0.70319–0.70393; 143Nd/Nd = 0.51263–0.51288)bear evidence for a time-averaged depletion in incompatibleelements, the high incompatible element abundances of the lavasare interpreted to reflect the effects of a recent mantle enrichmentevent. At depths well within the garnet stability field thismantle enrichment is interpreted to have taken the form of modalmetasomatism with the introduction of amphibole (giving riseto the source of LGT magmas), whereas cryptic metasomatism tookplace at shallower levels (giving rise to the source of KT lavas).The Nd, Sr and Pb isotope signature of the majority of Comoreanlavas (both LGT and KT) is proposed to be the result of predominant4contributions from a somewhat heterogeneous source4 4 4 presentativeof the ambient sub-Comorean mantle, comprising a mixture betweena HIMU component and a component on the depleted portion ofthe mantle array (possibly the source of Indian Ocean MORB),with only limited contributions from an EM I plume component.The lavas erupted by Karthala volcano (the youngest Comoreanlavas), however, have significantly different isotopic compositionsfrom all other Comorean lavas (lower 143Nd/144Nd and higher87Sr/86Sr), suggesting increased contributions from the EM Icomponent. KEY WORDS: basalt petrogenesis; Comores; mantle geochemistry; ocean island basalts *Telephone: 27-21-6502921. Fax: 27-21-6503781 e-mail: alr{at}geology.uct.ac.za.  相似文献   

20.
Recent pantelleritic lavas comprise the whole of the isolated and outlying volcano of Mayor Island. Mineralogically, they are characterised by phenocrystic anorthoclase-sodic27 sanidine, quartz, sodic ferrohedenbergite, and cossyrite. Nine new chemical analyses of the lavas are presented (including one residual glass), confirming their strongly sodic and peralkaline nature. One analysis is also given of trachybasalt, which occurs as common inclusions in the mantling pumice deposits. These inclusions are characterised by abundant feldspar phenocrysts. Detailed trace element data is presented for five of the lava samples, representing the mam volcanic phases and the trachybasalt inclusions. The following conclusions are presented:
  1. The lavas exhibit a marked enrichment (relative to “average” granitic compositions) of the alkalis; rare earths; highly charged cations (e.g. Nb, Zr, Hf, Mo, U, Th); Ga, Be, and Cl. In contrast, they show a spectacular depletion of Sr, Ba, and Mg, and a less intense depletion of Ca, Sc, V, and Cr.
  2. The pantelleritic rare earth patterns show a similar degree of fractionation to the sedimentary pattern, and are dominated by a very strong Eu depletion. This suggests feldspar subtraction. The trachybasalt pattern shows a similar degree of fractionation, but exhibits enrichment of Eu.
  3. The trachybasalt inclusions are characterised by a trace element assemblage comparable to alkali basalts, except for higher Ba and exceedingly high K/Rb and K/Cs ratios. The chemical and mineralogical data suggest that they represent partial feldspar accumulate rocks.
  4. There is a progressive enrichment of nearly all trace and minor elements in the youngest lavas. This includes those elements that show an overall depletion in the lavas. The younger lavas are also enriched in Na and Fe, but further depleted in Al.
The data is interpreted to indicate that the pantellerites were derived by crystal differentiation from a postulated mildly alkali olivine basalt parent — feldspar fractionation is considered to have been extremely important in this process. It is shown that the element enrichment occurring in the younger lavas may not be wholely explained by crystallisation differentiation alone — it is possible that some additional process is required. It is also shown that the observed enrichment of sodium in the youngest lavas can only occur during crystal fractionation if quartz, as well as anorthoclase, separate from the magma. This is due to the higher alkali abundances of the anorthoclase phenocrysts, relative to the pantellerite compositions. There is limited evidence that post-eruptive devitrification of some of the lavas has resulted in some modification of the lava chemistry, notably sodium loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号