首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The polarization distribution of 17 GHz bursts is studied observed within a period of 1 yr after maximum solar activity. The typical variation of polarization with time of impulsive bursts leads to the conclusion of a thermalization of the emission region in the post-burst phase. The fine structure of the polarization curve of complex bursts is shown and two possible interpretations of the observed inversion of the polarization at 17 GHz during a complex event are given.  相似文献   

2.
A magnetohydrodynamic (MHD) approach is presented that appears to be comprehensive for the interpretation of the recently discovered microwave solar events, in which only the degree of circular polarization changes, without any increase in the output of the total solar flux. On the basis of this explanation experimental evidence is suggested for Alfvén waves, in relation to the velocity fields in the solar chromosphere.  相似文献   

3.
Kaufmann  P.  Correia  E.  Costa  J. E. R.  Sawant  H. S.  Vaz  A. M. Zodi 《Solar physics》1985,95(1):155-165
The simplest solar microwave microbursts detected with high sensitivity may be the response to the simpler energetic burst injections. Seventeen events from this category were identified in a series of more than 150 bursts recorded in 21–26 November, 1982. This first systematic study suggest that microbursts e-folding rise times concentrate into two classes of time scales, 0.05 s < t 1 s and 0.5 s t 2 s. Microbursts circular polarization present a dominant steady or slowly varying component that sets in before maximum emission. In some cases a faster component of polarization was found superimposed, which is not always well correlated in time with flux.  相似文献   

4.
G. Feix 《Solar physics》1969,9(2):265-268
From a burst survey at 36 GHz, the diameter of the burst core was always found less than 1′. Several limb bursts with a remarkable flash intensity have been observed. Comparison of corresponding bursts on the disk exhibit in general a recognizable post-increase phase which seems to become faint at the solar limb. This work was performed at the Stockert Radio Observatory, near Bonn, Germany.  相似文献   

5.
The occurrence of very faintly polarized, or unpolarized impulsive bursts observed at 7 GHz is discussed. It appears that some of them show a peculiar spectral peak somewhere between 5 GHz and 7 GHz. Possible interpretations are suggested, emphasizing the need to associate to the burst the state of polarization of the S-component in which it occurred.  相似文献   

6.
The more impulsive 7 GHz bursts seem to prefer the solar limb regions, while the degree of polarization decreases with increasing impulsivity.  相似文献   

7.
J. C. Henoux 《Solar physics》1975,42(1):219-233
The effects of the Compton back-scattered X-ray flux from the photosphere on the directivity and polarization of flare X-rays between 15 keV and 150 keV are computed. The calculations are made with a thin target model for flares of De Jager-Kundu type with electrons spiralling downward around a vertical magnetic field and for an Isotropie source. The resulting polarization for an isotropic source is not higher than 4%. The resulting directivity of anisotropic sources is greatly reduced, particularly below 70 keV. The results of the statistical studies of the center-limb distribution of solar X-ray bursts are then compatible with the existing measures of polarization. The hypothesis for existence of De JagerKundu type flares is enforced.  相似文献   

8.
Wang  S.J.  Yan  Y.H.  Fu  Q.J. 《Solar physics》2002,209(1):185-193
Many solar microwave bursts presenting fine structures were recorded at high temporal resolution (8 ms) by the 2.6–3.8 GHz spectrometer of National Astronomical Observatories of China (NAOC). Here we present data that were recorded on 15 April 1998. After data processing, more than one hundred spikes were detected in the interval 07:59:29.622–07:59:50.362 UT. Some of the spikes were single, while others were grouped in clusters. We report the observational characteristics including lifetime, frequency bandwidth, drift rate and polarization degree, as well as duration of spike clusters. Afterwards we discuss the difference between the lifetime of the spikes presented here (near 3 GHz) and those reported formerly at frequency up to 1 GHz, the probable source density and dimension, the brightness temperature and some other characteristics.  相似文献   

9.
Twenty four solar bursts of peak fluxes above 50 sfu are analyzed which were observed with the 17 GHz interferometer at Nobeyama during the period from 1978 September to 1979 December. Source characteristics and their temporal evolutions are investigated on a statistical basis with high time resolutions up to 0.8 s. Use of a model-fitting technique recently developed by Kosugi (1982) is made to derive both the position of centroid and size (~ FWHM) of burst source with an uncertainty of a few arc sec. The results of this study are the following:
  1. Two different phases in the burst, that is to say, the main phase and the post-burst-increase (PBI) phase, are distinguished clearly not only by the morphological difference of flux time profile, but also by the differences of brightness temperature (107-?109 K vs 105–107 K), circular polarization degree (0–50% vs 0–10%), and size (?5–25″ vs 10–70″). There is no definite correlation between the peak fluxes in the two phases.
  2. The majority of the selected bursts (21 of 24) show in the main phase source characteristics of the impulsive burst. The total flux varies rapidly (characteristic time scale defined by FWHM ? 100 s), often associated with the rapid shift of position and the rapid change of polarization degree. The source height of the impulsive source is lower than that of the PBI source. On the other hand, the type IVμ source, seen in three events, shows a gradual variation and the source ascends to a height of ~ 40 000 km above the photosphere.
  3. In the PBI phase, the expansion and ascension of the source occur in general (21 of 23 for the former and 12 of 15 for the latter). The velocities of both the movements are of the order of 5 km s?1.
  相似文献   

10.
A search for linear polarization showing the effect of Faraday rotation has been made at 80 MHz in type III solar radio bursts. A novel autocorrelation technique was employed. The results were entirely negative, contrary to what was expected on the ground of earlier, less sophisticated experiments. However, there are convincing theoretical reasons why no linear polarization should be expected.Radiophysics Publication RPP 1642, September, 1972.  相似文献   

11.
12.
High-resolution observations of solar radio bursts made simultaneously with multi-element compound interferometers at 3.75 and 9.4 GHz are presented.Preliminary results are: (1) The burst of December 16, 1967 showed a change in polarization distribution in the radio source, which suggests a magnetic field change in the source. (2) The existence of the multi-source burst is also confirmed at 3.75 GHz. (3) The source size of the impulsive burst is estimated to be 0.'5. (4) Among the GRF bursts there seem to be two kinds; one has a large angular size and the other has a small one.A brief discussion is given of the burst of December 16, 1967.  相似文献   

13.
A solar flare occurring on 26 February, 1981 at 19:32 UT was observed simultaneously in hard X-rays and microwaves with a time resolution of a fraction of a second. The X-ray observations were made with the Hard X-ray Monitor on Hinotori, and the microwave observations were made at 22 GHz with the 13.7 m Itapetinga mm-wave antenna. Timing accuracy was restricted to 62.5 ms, the best time resolution obtained in hard X-rays for this burst. We find that: (a) all 22 GHz flux structures were delayed by 0.2–0.9 s relative to similar structures in hard X-rays throughout the burst duration; (b) different burst structures showed different delays, suggesting that they are independent of each other; (c) the time structures of the degree of polarization at 22 GHz precede the total microwave flux time structures by 0.1–0.5 s; (d) The time evolutions of time delays of microwaves with respect to hard X-rays and also the degree of microwave polarization show fluctuations with are not clearly related to any other time structures. If we take mean values for the 32 s burst duration, we find that hard X-ray emission precedes the degree of microwave polarization by 450 ms, which in turn precedes the total microwave flux by 110 ms.  相似文献   

14.
It is known that mode coupling may occur in quasi-transverse magnetic field regions of the solar corona, which produces linear polarization at microwave frequencies. A microwave polarimeter measuring all 4 Stokes parameters at 8.918 GHz simultaneously at three different highfrequency bandwidths (40 kHz, 400 kHz and 5 MHz) has been developed in order to observe the linear component and its Faraday rotation. The respective minimum detectable changes of the Stokes parameters I, Q, U and V are 9, 3 and 1 solar flux unit at an integration time of 1 s. For burst intensities greater than 300 solar flux units, the minimum detectable degree of linear and circular polarization is 1 %–3 %, depending on the bandwidth. Observations of 68 bursts showed that most of the bursts were circularly polarized. No linear polarization could be found within the limits of accuracy of our polarimeter. Two possible explanations for this result are discussed. The possibility of mode coupling however cannot be excluded from these first observations.  相似文献   

15.
On April 3, 4, 6, and 8, 1978, solar observations were made using the Haystack 120 ft telescope at 8, 15, 22, and 43 GHz. H filtergrams obtained at the Sacramento Peak Observatory on the same days showed an average of more than 30 filaments or filament fragments (per day) on the disk. Most of these appeared as depressions in brightness temperature at 15 and 22 GHz. Because of the relatively low spatial resolution at 8 GHz, only a few appeared at that frequency, and presumably because of lower opacity in filaments at higher frequencies, few depressions were visible at 43 GHz. At 15 and 22 GHz, more depressions appeared than H filaments, but virtually all the radio depressions overlay magnetic neutral lines. Taking the data sets for each day as independent samples, we found that at 22 GHz, 46 of the 77 radio depressions were associated with H filaments; at 15 GHz the correlation was smaller; only 27 out of 48 being associated with the H filaments. The data imply that the microwave depression features are the result of absorption by filaments and perhaps also the result of other effects of the associated filament channel, but not necessarily coronal depletion. The effects of filament absorption are, statistically, about twice as effective as other phenomena (such as absorption by material invisible in H, for example) in creating the radio depression. A center-to-limb study of a single large filament clearly showed that at 15 and 22 GHz the absorption by cool hydrogen supported above the neutral line was the predominant factor in producing the observed depression at radio frequencies.  相似文献   

16.
A type of pulsation in a time scale of seconds superimposed on microwave burst at 9.375 GHz has been found during the twenty-second solar active maximum period by us. This phenomenon is quite different from radio spike emission at decimeter and long centimeter wavelengths. The flux level of the bursts rises as the repetition rate of pulsations increases, following an approximate linear relationship. This feature resembles that at mm wavelength, but some other features are different. Some mechanisms for interpretation have been proposed.  相似文献   

17.
The solar radius at 35 GHz has been determined from solar radio maps made with a pencil beam antenna of half-power beam width 2.8 arcmin at the La Posta Astrogeophysical Observatory during 1973 and 1974. The 35 GHz radius was found to be 2.57% ±0.88% larger than the photospheric radius. The sensitivity of the result to the method of determination is discussed.  相似文献   

18.
From 200 GRF (gradual rise and fall) bursts which have been recorded with the 17 GHz interferometer at Nobeyama, we deduce the following characteristics of GRF bursts: (1) Sources of GRF bursts are broader, less circularly polarized than those of impulsive bursts. (2) The sources are potentially of bipolar structure and have the peak brightness near the position at which the sense of circular polarization changes. (3) The association of GRF bursts with type III bursts, which are indicative of nonthermal electron acceleration, is significantly poorer than that of impulsive bursts.It is suggested that the sources of GRF bursts or generally of thermal bursts lie relatively high in the solar atmosphere possibly near the top of magnetic loops or arches which divide two regions of opposite magnetic polarity.  相似文献   

19.
The positions and motions of solar bursts in the range 20 to 60 MHz have been measured by the means of a sweep-frequency grating interferometer with angular resolution of 5 arc at 60 MHz decreasing to 15 arc at 20 MHz. The positional characteristics of the decameter wavelength bursts are discussed in terms of the commonly accepted theories of the origin of radio bursts from plasma and synchrotron radiations.  相似文献   

20.
The phase stability of the Radioastron 22 GHz satellite-VLBI-receiver has been studied by measurements. The resulting performance of the receiver in an interferometer system was evaluated. The maximum phase jitter value of 2° due to the receiver causes only marginal degradation for astronomical observations. During observations the requirement of a phase drift value less than 3° in the receiver system can be met after an initial warm-up if the overall ambient temperature changes do not exceed 4°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号