首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Eskimo Lakes and Liverpool Bay constitute a series of estuarine waters to the Beaufort Sea in arctic Canada. Salinity ranges in summer from 20‰ at the mouth to less than 1‰ at the head of the system. Arctic features include an ice cover lasting for about 8 months annually and water temperatures which fluctuate from ?1°C in winter to as high as 12°C in late summer. Subsurface light is severely attenuated. Reactive phosphate varies from a spring high of 0.3 μg-at P per 1 to undetectable levels during summer. Nitrate is more abundant, and silicate is consistently plentiful. Chlorophyll a reaches a maximum only occasionally higher than 3 mg per m3 in June and July, rising from undetectable levels in winter. Photosynthetic rates are low by all standards, and have not been measured at greater than 6.4 mg C per m2 per hour in summer. Low levels of subsurface light and reactive phosphate and nitrate characterize this exceptionally oligotrophic arctic estuary.  相似文献   

2.
Monthly measurements made at 15 stations along the axis of the upper Neuse River estuary show a highly variable degree of correlation between concentration of suspended particulate material (SPM) and attenuation of light (c) as measured by transmissometer. Coefficients of determination along transect lines ranged from 0.12 to 0.93 and calibration slopes ranged from 0.50 to 5.63. When examined on a station-by-station basis, coefficients of determination ranged from 0.21 to 0.96 and calibration slopes ranged from 1.04 to 4.94. Surface calibrations made at individual stations over the full 13-month period were the most consistent of all observations and were considerably better than calibrations made using all of the stations on a given day. Organic content, which can dominate the suspended sediment load during some months, does not appear to explain the variations in reliability of the calibrations. However, an abundance of large aggregates with time-varying size and shape distributions may be partly responsible for variations in optical properties of the sediments, and thus may confound the relationship between SPM and c in the Neuse River estuary. Time-varying calibrations to account for non-negligible changes in optical properties may not suffice in complex estuarine environments where the in situ particle dynamics are poorly understood.  相似文献   

3.
黄河口有机碳的时空输运特征及其影响因素分析   总被引:9,自引:0,他引:9       下载免费PDF全文
通过2004年4月,2004年9月,2005年9月,2006年4月4个航次,结合2003年8月对河道感潮带的连续同步观测,对低流量下黄河口有机碳的输运特征进行了考察。结果发现:黄河输入至河口的悬浮物中颗粒有机碳(POC)含量约为0.51%,主要以陆源输入为主,几乎不受季节变化影响,由于大量POC含量低的陆源泥沙的稀释作用,浮游植物对总颗粒有机碳的贡献只有在悬浮物含量(TSS)<200mg/L时才能显现出来;黄河口TSS超过455mg/L时,有机碳入海以颗粒有机碳为主;反之,以溶解有机碳为主。黄河口悬浮物在低盐度区沉降作用前后的中值粒径降低,Φ>16μm的悬浮物的沉降作用比Φ<16μm的悬浮物更为剧烈,POC含量随悬浮物粒径的降低而升高,黄河携带的颗粒有机碳80%以上集中在Φ<16μm的TSS中;低流量下,黄河口最大混浊带对POC的过滤效率为65%,混浊带对POC的过滤效应能造成黄河口POC的有效通量被高估;由于受黄河口沉积物向水体解析DOC的影响,在盐度小于10时,DOC几乎不受海水稀释作用的影响,但在盐度大于10的区域DOC与盐度表现出良好的负相关关系,黄河口枯、丰水期淡水端溶解有机碳的有效浓度分别高于实测最高值20%和10%左右,从而造成黄河口DOC有效通量被低估。  相似文献   

4.
The Delaware Estuary is heavily urbanized with elevated concentrations of phosphorus from industrial and municipal inputs. For 24 research cruises during 1986–1988, total phosphorus (TP) concentration was highest near maximum inputs in the tidal river and at low salinity where turbidity was maximal. In these contiguous regions, average TP concentration over the study period was 5.3–6.1 μM. Downstream of the TP peak in the high turbidity zone of the estuary, TP decreased to minimum concentrations (1.3–1.5 μM) near the mouth of Delaware Bay. Distributions of dissolved reactive (DRP), dissolved organic (DOP), and particulate (PP) phosphorus along the estuary reflected spatial and temporal patterns in phosphorus inputs, turbidity, river flow, and biological production. In the river, DRP was 2–4 μM (51–65% of TP) and inversely related to river flow. PP, although enriched in the river (1–3 μM), was highest (>4 μM) in the turbidity maximum at low salinity. In the bay, distributions of DRP, PP, and DOP were all linked, in different ways, to biological production. The dependence of DOP on production was, however, complex and affected by DRP concentrations. During the past 30 yr, there has been a fourfold decrease in TP concentrations in the tidal river of the Delaware Estuary. This dramatic decrease in TP, however, is contrasted by an apparent increase in DRP concentration over the past 12 yr. This apparent increase in DRP may be linked to improved water quality (e.g., higher pH) in the river over the past decade.  相似文献   

5.
We investigated seasonal and tidal-monthly, suspended particulate matter (SPM) dynamics in the Columbia River estuary from May to December 1997 using acoustic backscatter (ABS) and velocity data from four long-term Acoustic Doppler Profiler (ADP) moorings in or near the estuarine turbidity maximum (ETM). ABS profiles were calibrated and converted to total SPM profiles using pumped SPM samples and optical backscatter (OBS) data obtained during three seasonal cruises. Four characteristic settling velocity (W s) classes were defined from Owen Tube samples collected during the cruises. An inverse analysis, in the form of a non-negative least squares minimization, was used to determine the contribution of the four,W s-classes to each, total SPM profile. The outputs from the inverse analyses were 6–8 mo time-series ofW s-specific SPM concentration and transport profiles at each mooring. The profiles extended from the free surface to 1.8–2.7 m from the bed, with 0.25–0.50 m resolution. These time series, along with Owen Tube results and disaggregated size data, were used to investigate SPM dynamics. Three non-dimensional parameters were defined to investigate how river flow and tidal forcing affect particle trapping: Rouse numberP (balance between vertical mixing and settling) trapping efficiencyE (ratio of maximum SPM concentration in the estuary to fluvial source concentration), and advection numberA (ratio of height of maximum SPM concentration to friction velocity). The most effective particle trapping (maximum values ofE) occurs on low-flow neap tides. The location of the ETM and the maximal trapping migrated seasonally in a manner consistent with the increase in salinity intrusion length after the spring freshet. Maximum advection (high values ofA) occurred during highly stratified neap tides.  相似文献   

6.
A box model based on salinity distributions and freshwater inflow measurements was developed and used to estimate net non-tidal physical circulation and hydraulic residence times for Patuxent River estuary, Maryland, a tributary estuary of Chesapeake Bay. The box model relaxes the usual assumption that salinity is at steady-state, an important improvement over previous box model studies, yet it remains simple enough to have broad appeal. Average monthly 2-dimensional net non-tidal circulation and residence times for 1986–1995 are estimated and related to river flow and salt water inflow as estimated by the box model. An important result is that advective exchange at the estuary mouth was not correlated with Patuxent River flow, most likely due to effects of offshore salinity changes in Chesapeake Bay. The median residence time for freshwater entering at the head of the estuary was 68 d and decreased hyperbolically with increasing river flow to 30 d during high flow. Estimates of residence times for down-estuary points of origin showed that, from the head of the estuary to its mouth, control of flushing changed from primarily river flow to other factors regulating the intensity of gravitational circulation.  相似文献   

7.
This paper presents a general, process-based model for suspended particulate matter (SPM) in defined coastal areas (the ecosystem scale). The model is based on ordinary differential equations and the calculation time (dt) is 1 month to reflect seasonal variations. The model has been tested using data from 17 Baltic coastal areas of different character and shown to predict mean monthly SPM-concentrations in water and Secchi depth (a measure of water clarity) very well (generally within the uncertainty bands given by the empirical data). The model is based on processes regulating inflow, outflow and internal fluxes. The separation between the surface-water layer and the deep-water layer is not done in the traditional manner from water temperature data but from sedimentological criteria (from the wave base which regulates where wind/wave-induced resuspension occurs). The model calculates the primary production of SPM (within the coastal areas), resuspension, sedimentation, mixing, mineralization and retention of SPM. The SPM-model is simple to apply in practice since all driving variables may be readily accessed from maps or regular monitoring programs. The model has also been extensively tested by means of sensitivity and uncertainty tests and the most important factor regulating model predictions of SPM-concentrations in coastal water is generally the value used for the SPM-concentration in the sea outside the given coastal area. The obligatory driving variables include four morphometric parameters (coastal area, section area, mean and maximum depth), latitude (to predict surface water and deep water temperatures, stratification and mixing), salinity, chlorophyll and the Secchi depth or SPM-concentration in the sea outside the given coastal area. Many of the structures in the model are general and could potentially be used for coastal areas other than those included in this study, e.g., for open coasts, estuaries or areas influenced by tidal variations.  相似文献   

8.
The chemical reactivity of uranium was investigated across estuarine gradients from two of the world’s largest river systems: the Amazon and Mississippi. Concentrations of dissolved (<0.45 μm) uranium (U) were measured in surface waters of the Amazon shelf during rising (March 1990), flood (June 1990) and low (November 1991) discharge regimes. The dissolved U content was also examined in surface waters collected across estuarine gradients of the Mississippi outflow region during April 1992, August 1993, and November (1993). All water samples were analyzed for U by isotope dilution inductively coupled plasma mass spectrometry (ICP-MS). In Amazon shelf surface waters uranium increased nonconservatively from about 0.01 μg I?1 at the river’s mouth to over 3 μg I?1 at the distal site, irrespective of river discharge stage. Observed large-scale U removal at salinities generally less than 15 implies a) that riverine dissolved U was extensively adsorbed by freshly-precipitated hydrous metal oxides (e.g., FeOOH, MnO2) as a result of flocculation and aggregation, and b) that energetic resuspension and reworking of shelf sediments and fluid muds on the Amazon shelf released a chemically reactive particle/colloid to the water column which can further scavenge dissolved U across much of the estuarine gradient. In contrast, the estuarine chemistry of U is inconclusive within surface waters of the Mississippi shelf-break region. U behavior is most likely controlled less by traditional sorption and/or desorption reactions involving metal oxides or colloids than by the river’s variable discharge regime (e.g., water parcel residence time during estuarine mixing, nature of particulates, sediment storage and resuspension in, the confined lower river), and plume dispersal. Mixing of the thin freshwater lens into ambient seawater is largely defined by wind-driven rather than physical processes. As a consequence, in the Mississippi outflow region uranium predominantly displays conservative behavior; removal is evident only during anomalous river discharge regimes. ‘Products-approach’ mixing experiments conducted during the Flood of 1993 suggest the importance of small particles and/or colloids in defining a depleted U versus salinity distribution.  相似文献   

9.
Irrigation in low-lying coastal plains may enhance the formation of fresh groundwater lenses, which counteract salinization of groundwater and soil. This study presents seasonal dynamics of such a freshwater lens and discusses its influence on the salinity distribution of the unconfined aquifer in the coastal plain of Ravenna, Italy, combining field observations with numerical modeling (SEAWAT). The lens originates from an irrigation ditch used as a water reservoir for spray irrigation. The geometry of the freshwater lens shows seasonal differences because of freshwater infiltration during the irrigation season and upconing of deeper saltwater for the remainder of the year. The extent of the freshwater lens is controlled by the presence of nearby drainage ditches. Irrigation also results in a temperature anomaly in the aquifer because of the infiltration of warm water during the irrigation season. The surficial zone in the vicinity of the irrigation ditch is increased considerably in thickness. Finally, different irrigation alternatives and the influence of sea-level rise are simulated. This shows that it is necessary to integrate irrigation planning into the water management strategy of the coastal zone to have maximum benefits for freshening of the aquifer and to make optimal use of the existing infrastructure.  相似文献   

10.
The literature on incised river valley sedimentology is dominated by studies of sediment‐rich systems in which the valley has been filled during and/or shortly after drowning. In contrast, the Holocene evolution of the Kosi Lagoon, South Africa (an incised coastal plain river valley) took place under very low sedimentation rates which have produced a distinctive stratigraphy and contemporary sedimentary environments. The findings are based on a synthesis of the results of studies of seismic stratigraphy, sediment distribution, morphodynamics and geomorphology. Barrier migration was prevented by a high pre‐Holocene dune barrier against which Holocene coastal deposits accumulated in an aggradational sequence. Holocene evolution of the back barrier involved: (i) drowning of the incised valley; (ii) wave‐induced modification of the back‐barrier shoreline leading to segmentation during the highstand; and (iii) marine sedimentation adjacent to the tidal inlet. Segmentation has divided the estuary into a series of geochemically and sedimentologically distinctive basins connected by channels in the estuarine barriers. The seismic stratigraphy of the back barrier essentially lacks a transgressive systems tract, shoreline modification and deposition having been accomplished during the highstand. The lack of historical geomorphological change suggests that the system has achieved morphological equilibrium with ambient energy conditions and low sediment supply. This study presents a classification for estuarine incised valley fills based on the balance between sea‐level rise and sedimentation in which Kosi represents a ‘give‐up’ estuary where much of the relict incised channel form is drowned and preserved. It exhibits a fundamentally different set of evolutionary processes and stratigraphic sequences to those of the better known incised valley systems in which sedimentation either keeps pace with sea‐level (‘keep‐up’ estuaries) or occurs after initial drowning (‘catch‐up’ estuaries).  相似文献   

11.
Observations are presented of the transverse and vertical structure of residual water, salt and sediment transport in the upper reaches of a partly mixed estuary. Measurements were made over spring and neap tidal cycles at three sections. The residual transport for each variable exhibited a characteristic transverse structure. This structure is interpreted in terms of fundamental physical processes. The results are used to estimate the relative importance of transverse shear, vertical shear and tidal pumping to the axial dispersion of salt and sediment.  相似文献   

12.
The effects of fortnightly, semidiurnal, and quaterdiurnal lunar tidal cycles on suspended particle concentrations in the tidal freshwater zone of the Seine macrotidal estuary were studied during periods of medium to low freshwater flow. Long-term records of turbidity show semidiurnal and spring-neap erosion-sedimentation cycles. During spring tide, the rise in low tide levels in the upper estuary leads to storage of water in the upper estuary. This increases residence time of water and suspended particulate matter (SPM). During spring tide periods, significant tidal pumping, measured by flux calculations, prevents SPM transit to the middle estuary which is characterized by the turbidity maximum zone. On a long-term basis, this tidal pumping allows marine particles to move upstream for several tens of kilometers into the upper estuary. At the end of the spring tide period, when the concentrations of suspended particulate matter are at their peak values and the low-tide level drops, the transport of suspended particulate matter to the middle estuary reaches its highest point. This period of maximum turbidity is of short duration because a significant amount of the SPM settles during neap tide. The particles, which settle under these conditions, are trapped in the upper estuary and cannot be moved to the zone of maximum turbidity until the next spring tide. From the upper estuary to the zone of maximum turbidity, particulate transport is generated by pulses at the start of the spring-neap tide transition period.  相似文献   

13.
Water column nutrients (nitrate, ammonium, soluble reactive phosphate, total Kjeldahl nitrogen, and total phosphorus) and suspended sediments (SS) were measured during one 44-h and two 28-h periods in March 1982 at two stations in Fourleague Bay, Louisiana, which is located at the mouth of the Atchafalaya River, a distributary of the Mississippi River. River water (a source of nitrate, total Kjeldahl nitrogen, total phosphorus, and suspended sediments to Fourleague Bay) flows into the upper reaches of the bay during high tide and frontal overrunning conditions with northerly and westerly winds. During one sampling period, decreasing wind speed and the rising tide resulted in Atchafalaya River water inundating the bay and nitrate concentrations in the upper bay increasing from 30–70 μM to 90–118 μM. Significant variations in nutrients associated with the movement of water masses from the river, marshes, and Gulf of Mexico occurred over several different time scales. Tidal transport occurred over 25-h periods, while frontal passages occurred at 3-d to 5-d intervals. Variability in nutrient and suspended sediment concentrations over these relatively short time scales can be as great as seasonal variability in the bay.  相似文献   

14.
The Avon River estuary of Nova Scotia was studied with the intention of analysing the relations between grain-size distributions and hydraulics. The Avon is macrotidal; tidal ranges up to 15·6 m generate tidal currents up to 1·7 m s?1. Maximum current speed increases from the mouth (seaward end) to the head (shoreward end) of the estuary. Mean grain size decreases from the estuary mouth to the head. Thus, there is an inverse relationship between mean grain size and current speed. Consequently, textural parameters do not directly reflect hydraulic conditions. Graphical dissection of cumulative frequency curves into their component grain populations reveals a large coarse population at the estuary mouth that is absent at the head. There are several relationships between hydraulics and cumulative curves. Shields’ criterion predicts that all sediment in the system can be transported so that the large coarse population at the estuary mouth is not a lag. Local maximum shear velocity nearly equals the settling velocity of the grain size at the boundary of the coarse (C) and intermediate (A) grain populations. This has been previously interpreted to signifiy a transition from traction to intermittent suspension transport, and implies that the C population is a function of traction and that the A population is related to intermittent suspension (Middleton, 1976). Each grain population is transported at a different rate; suspended grains travel almost an order of magnitude faster than grains moved by traction according to Einstein's transport formula. Sediment transport paths in the estuary were determined from bedform migration directions and the computed net sediment transport per tidal cycle using Engelund and Hansen's formula. The areal distribution of the transport paths, combined with the differential transport rates of each grain population, produces hydraulic sorting. Hydraulic sorting causes coarse sediment to be excluded from the estuary head and creates the inverse relationship between current speed and mean grain size.  相似文献   

15.
16.

Background  

The origin of the spatial variability of dissolved As concentrations in shallow aquifers of the Bengal Basin remains poorly understood. To address this, we compare here transects of simultaneously-collected groundwater and aquifer solids perpendicular to the banks of the Hooghly River in Chakdaha, India, and the Old Brahmaputra River in Araihazar, Bangladesh.  相似文献   

17.
18.
The vertical distribution of interstitial salinities to a depth of 6 cm in subtidal estuarine sediments was measured monthly from June 1977 to August 1978 in mud substrates in the Fraser River estuary, British Columbia. Measurements were made at six stations ranging from oligohaline to polyhaline. The results of this study demonstrated that vertical salinity gradients were present, particularly in the mesohaline zone of the estuary, in the sediments and that the magnitude of these gradients changes seasonally.  相似文献   

19.
We examine the global distribution of dissolved inorganic nitrogen (DIN) and particulate nitrogen (PN) export to coastal systems and the effect of human activities and natural processes on that export. The analysis is based on DIN and PN models that were combined with spatially explicit global databases. The model results indicate the widely uneven geographic distribution of human activities and rates of nitrogen input to coastal systems at the watershed, latitudinal, and regional-continental scales. Future projections in a business-as-usual scenario indicate that DIN export rates increase from approximately 21 Tg N yr−1 in 1990 to 47 Tg N yr−1 by 2050. Increased DIN inputs to coastal systems in most world regions are predicted by 2050. The largest increases are predicted for Southern and Eastern Asia, associated with predicted large increases in population, increased fertilizer use to grow food to meet the dietary demands of that population, and increased industrialization. Results of an alternative scenario for North America and Europe in 2050 indicate that reductions in the human consumption of animal protein could reduce fertilizer use and result in substantial decreases in DIN export rates by rivers. In another scenario for 2050, future air pollution control in Europe that would reduce atmospheric deposition of nitrogen oxides in watersheds is predicted to decrease DIN export by rivers, particularly from Baltic and North Atlantic watersheds. Results of a newly developed global PN river export model indicate that total global PN and DIN export by rivers in 1990 are similar, even though the global distribution of the two differ considerably.  相似文献   

20.
Carbohydrates including uronic acids are among the active components of dissolved organic carbon, and play an important role in biogeochemical cycling of organic carbon in marine environments. In order to understand their distribution, concentrations of total dissolved carbohydrate (TCHO), dissolved polysaccharide (PCHO), dissolved monosaccharide (MCHO), and dissolved uronic acid (URA) were measured in the Mandovi estuary, west coast of India during the monsoon and premonsoon seasons. The estuary experienced nearly fresh water condition during the monsoon season and marine condition during the pre-monsoon season. Concentrations of TCHO, MCHO and URA ranged from 17.7 to 67.3 μM C, 4.1 to 15.5 μM C and 2.3 to 10.8 μM C, and their contribution to dissolved organic carbon (DOC) varied from ∼11 to 60%, 2.5 to 9.7%, and 1.8 to 5.3%, respectively. PCHO accounted for ∼52 to 92% of the TCHO. Generally, concentrations and yields of TCHO species were greater during the monsoon season. Phytoplankton abundance and bacterial cell numbers influenced the distribution of TCHO in the pre-monsoon season but not during the monsoon season. Transport of TCHO rich (11 to 60%) dissolved organic matter from the Mandovi estuary to the coastal waters during the monsoon season may affect ecosystem function by fueling biological activity of heterotrophic micro-organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号