首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-parameter studies (stable isotopes in carbonate and organic matter, pigment,organic carbon and nitrogen contents) from a 660-yr continuous sediment core from Lake Cheng-hai, a closed, eutropic lake in southern China, provide information on lake historical eutrophi-cation. During the last 660 years, great changes have taken place in productivity and eutrophi-cation of Lake Chenghai in response to human activities. In 1690, the productivity of the lakebegan to increase as Lake Chenghai became closed from agriculture in the lake‘‘ s watershed. In 1942, Lake Chenghai evolved to eutrophic state, marked by an increase in organic carbon, ni-trogen, CaC03, pigment contents and obvious negative values of stable isotopes, which is more or less simultaneous with the large-scale population immigration during the period. In 1984, in-tensive human activities induced modern lacustrine productivity and eutrophic level. Human-in-duced trophic changes during the past few decades have affected the Lake Chenghai ecosystem tosuch an extent that it has never experienced before in the last 660 years.  相似文献   

2.
云南程海现代沉积物环境记录研究   总被引:9,自引:0,他引:9  
陈敬安  万国江 《矿物学报》2000,20(2):112-116
本文通过对程海沉积物C、H、N等元素含量及其比值的综合分析,辨识了程海沉积物有机质H/C及C/N值的环境指示意义,发现它们增可作为程海水位波动及区域气候干湿变迁的替代性指标。研究结果表明:程海的水位和区域气候干湿主为化明显以历了两个不同的阶段,但整体上程海水位一直呈下降趋势,反映区域气候整体上向干旱化方向发展。  相似文献   

3.
云南程海富营养化过程的碳氧稳定同位素示踪   总被引:11,自引:2,他引:9       下载免费PDF全文
近500年来程海生物成因碳酸盐δ18O和δ13C及其有机质δ13C同位素记录了程海湖泊环境由贫营养到中富营养的演化过程.碳酸盐δ18O记录显示,大约1690年程海成为封闭湖泊后,当时湖泊贫营养环境并没有发生变化,但造成了湖泊水体交换周期加长,碳酸盐δ13C、有机质δ13C及其色素含量、碳酸盐含量变化指示湖泊生产力开始增高.1911~1942年碳酸盐δ18O和δ13C及有机质δ13C突然显著偏负,表明湖泊生物种群结构发生转变,湖泊初级生产力迅速增加,湖泊由贫营养向中营养转化.湖泊沉积物色素含量及碳酸盐含量变化也记录了这一湖泊环境的转换过程.约1986年以来,随着藻类养殖业及其农业耕作方式的转变,程海水环境渐渐转变成目前的中富营养化状态.  相似文献   

4.
《Organic Geochemistry》1999,30(2-3):133-146
Lake George, located in the St. Marys River, has been heavily impacted by human-induced environmental changes over the past century. The effects of human impacts starting in the late nineteenth century and of natural, gradual diagenesis can be distinguished in the bulk organic matter and molecular contents of the sedimentary record. Organic carbon concentrations increase from 0.5% in sediments deposited 200 years ago to ∼4% in recent sediments. A fourfold increase in organic carbon mass accumulation rates accompanies the change in concentrations. Elevated C/N ratios in near-modern sediments indicate that increased delivery of land-derived organic matter has been responsible for much of the recent increases in sedimentary organic carbon. Organic δ13C and δ15N values change significantly and coincidentally with the environmental changes, reflecting depressed algal productivity since the introduction of industrial effluents to the aquatic system, increased delivery of land-derived organic matter and some impacts of acid rain. Increases in microbial and petroleum hydrocarbon contributions occur in sediments deposited since 1900. Fatty acid distributions provide evidence of substantial microbial reworking of organic matter throughout the sedimentary record.  相似文献   

5.
The carbon isotopic composition of organic matter from lake sediments has been extensively used to infer variations in productivity. In this paper, based on the study of the contents and δ13C values of organic matter in different types of lakes, it has been found that δ13C values of organic matter have different responses to lake productivity in different lakes. As to the lakes dominated by aqutic macrophytes such as Lake Caohai, organic matter becomes enriched in 13C with increasing productivity. As to the lakes dominated by aquatic algae such as Lake Chenghai, δ13C values of organic matter decrease with increasing productivity, and the degradation of aquatic algae is the main factor leading to the decrease of δ13C values of organic matter with increasing productivity. Therefore, we should be cautious to use the carbon isotopic composition of organic matter to deduce lake productivity.  相似文献   

6.
As one of the lakes on the Yunnan-Guizhou plateau, Lake Chenghai, which is a typical closed lake with the precipitation accounting for one-third or more of the annual water input, has a high total salinity (almost like a saline lake). The inorganic C, O isotopic composition of lake sediments bears much sensitive information about environmental change in the catchment, while their correlations revealed the hydrological conditions under which the lake was closed. Their compositional variations are controlled by temperature, precipitation, photosynthesis, dissolving equilibrium of the carbonate system and hydrological condition. According to our research on inorganic C, O isotopic composition of Lake Chenghai sediments, we investigated the environmental change of this catchment several decades ago. The results showed that Lake Chenghai has kept good hydrological closing conditions in the past several decades, as indicated by the good correlation of inorganic C, O isotopic composition of sediments; and that the environmental change in this catchment shows a tendency of periodical evolution on a 10−11-years scale, although the signal noise is relatively high at the bottom of the sediment core. And we also can extend C, O isotopes, a sensitive environmental indicator, to nearly saline lake environments with a high degree of mineralization.  相似文献   

7.
通过对日本大沼湖沉积物样品总有机碳含量(TOC)及其稳定同位素、总氮含量(TN)和C/N 值的测定, 结合沉积岩芯火山灰和 14C 年代, 分析了大沼湖沉积物中有机质的来源, 探讨了沉积物有机碳同位素的主要影响因素。结果表明: 大沼湖沉积物中有机质主要来源于自生藻类, 受陆源输入的影响较小; 沉积物δ13C 值指示了夏季温度的变化。过去400年来, 大沼湖地区存在1660~1730年和1780~1860年两个明显的冷期, 与邻近地区冰芯、树轮和湖泊沉积物记录的冷期基本一致, 分别对应于Maunder和Dalton太阳黑子极小期。  相似文献   

8.
Analyses of carbon and hydrogen isotope ratios of terrestrial leaf waxes and the carbon and nitrogen abundance, ratio, and isotopic composition of bulk sediments from Lake Wandakara, a crater lake in western Uganda, East Africa, document human and climatic controls on the aquatic system and on the surrounding terrestrial vegetation during the past two millennia. Our data indicate that Wandakara was a relatively stable, productive lake surrounded by C3 vegetation from AD 70 to 1000. Abrupt changes in the δ13C of terrestrial leaf waxes indicate a series of abrupt shifts in the relative abundance of C3 and C4 vegetation caused by a combination of climate change and human activities around Wandakara beginning at AD 1000. Abrupt shifts in bulk sediment organic geochemistry, particularly C/N ratios and δ15N, indicate that human activities at this time caused permanent changes in the limnology of Lake Wandakara, including eutrophication. Our results suggest that the biogeochemistry of Lake Wandakara was more sensitive to shifting human impacts than to climate variations during the past millennium, highlighting the importance of understanding the intensity of pre-colonial human impacts on Africa's aquatic ecosystems.  相似文献   

9.

总有机碳(TOC)、稳定碳同位素(δ13C)、岩石热解分析(Rock-Eval)和甾醇生物标志物等有机地球化学指标用于研究滇池过去70年沉积物有机质的来源及水体生产力的变化。C/N、δ13C、氢指数(HI)表明滇池沉积物有机质主要为水生来源, 且主要为藻类有机质。初级生产力指标(热解烃峰参数(S2)、HI、δ13C)和浮游植物甾醇(菜籽甾醇、甲藻甾醇)含量从2000年以后快速增加, 而从近几年开始增速放缓或开始下降, 说明滇池水体生产力在过去几十年不断上升, 不过在最近得到一定控制, 这与滇池沉积物营养盐的变化趋势相似。对生产力指标和浮游植物甾醇与环境因子如5年移动平均气温(T5)、总氮(TN)、总磷(TP)进行相关分析, 结果表明滇池生产力变化与环境因子呈现显著的正相关关系, 说明气候变暖和营养盐增加均促进该水域藻类的繁殖; 此外, 多元线性回归分析结果表明, TN是影响滇池生产力变化的主要环境因子。研究结果对探寻水体富营养化过程及影响因子, 并对湖泊管理和水华防治工作提供科学依据。

  相似文献   

10.
珠江口近百年来富营养化加剧的沉积记录   总被引:52,自引:2,他引:50       下载免费PDF全文
由于土地利用和人类活动加剧所导致的营养元素由河流输入的增加是引起河口港湾地区富营养化趋势增强的重要原因,由此引发的赤潮在中国沿海地区呈现越来越频繁的趋势。本文通过珠江口两个沉积柱状样(ZJ6和ZJ10)揭示了该水域近百年来的富营养化加剧趋势。由柱状样中的TOC/TN比值判断,TOC是陆源和水生两种来源的混合物。在假设陆源和水生有机质C/N比值分别为5和20后,计算了在沉积物中两种来源有机碳的含量得到:两钻孔柱状样中水生有机碳、总氮、生物硅、陆源有机碳沉积通量自20世纪20年代到90年代呈明显升高趋势,分别增加了2.0、3.6、2.9、12.0倍(ZJ6)和5.4、6.8、5.5、10.6倍(ZJ10)。这一趋势与中国珠江三角洲地区在此期间,特别是50年来生产力的迅速提高趋势相对应。两钻孔柱状样中生物硅沉积通量的增加幅度逐渐超出水生有机碳沉积通量的增加幅度,表明硅藻是富营养化的敏感藻类。目前,Si相对于N、P还不是珠江口水域的限制性营养元素,但若不对水域的营养物进行有效管理以平衡营养元素间的比例关系和减弱富营养化趋势,珠江口的浮游生物种群结构和底层水的溶解氧含量将受到严重影响。  相似文献   

11.
Changes in organic materials preserved within sediments of Saginaw Bay deposited over the past two centuries record corresponding periods in the environmental history of this part of Lake Huron and its watershed. Sediments deposited since 1940 show an increasingly greater input of aquatic organic matter in response to accelerating cultural eutrophication of Saginaw Bay. Concentrations of fatty acids, sterols, fatty alcohols, and aliphatic hydrocarbons are higher in these modern sediments than in deeper ones. Molecular distributions of these geolipids reflect less aquatic material deeper in the sediments. Prior to 1875, sediment organic matter appears to be diluted by mineral matter from enhanced erosion caused by clearing of the watershed for farming and settlement. During this period there is better preservation of carbonate minerals due to quicker burial. Since 1875, petroleum components comprise over 90% of the total aliphatic hydrocarbon content of these sediments, reflecting the advent and continued existence of chronic, low-level petroleum contamination of this part of the Great Lakes.  相似文献   

12.
Analyses for dissolved oxygen, nitrate and total CO2 in the interstitial water have been combined with solid phase sediment analyses of carbon and nitrogen to calculate the rates of reaction and stoichiometry of decomposing organic matter in central Equatorial Pacific pelagic sediments. The diagenesis is dominated by aerobic respiration and nitrification.Organic carbon and total nitrogen decrease exponentially with depth in both red clay and carbonate ooze sediments. In addition, there is a correlation between surface organic carbon and total nitrogen with distance from the equator. Fixed NH4 is relatively constant with depth and constitutes 12 to 64% of the total nitrogen. The remainder is considered to be organic nitrogen.The CN ratio of the decomposing organic matter was obtained using three approaches. Using the correlations of organic carbon with total nitrogen or organic nitrogen the molar ratios varied from 3.4 to 18.1. The average of all stations was 12.6 using total nitrogen and 13.7 using organic nitrogen. The Redfield ratio is 6.6. Approaches using interstitial water chemistry gave lower ratios. The average value using correlations between dissolved oxygen and nitrate was 8.1. The same approach using total CO2 and nitrate gave an average of 9.1. Due to difficulties in unambiguously interpreting the solid phase data we favor the ratios obtained from the pore water analyses.The rate of organic matter decomposition can be obtained from model calculations using the dissolved oxygen and solid organic carbon data. Most gradients occur in the upper 10 to 20 cm of the sediments. Assuming that bioturbation is more important than sedimentation we have calculated first order rate constants. The average values using organic carbon and dissolved oxygen was 3.9 kyr? and 4.2 kyr? respectively using a biological mixing coefficient of 100 cm2 kyr?1. These rate constants decrease in direct proportions to the mixing coefficient.  相似文献   

13.
刘强  李倩  旺罗  储国强 《第四纪研究》2010,30(6):1069-1077
月亮湖是位于大兴安岭中段阿尔山-柴河火山区的一个火山口湖,地处现今季风/非季风影响的过渡地带,对气候环境变化反应敏感。月亮湖长约9m的沉积岩芯记录了21cal.kaB.P.来的古气候演化历史。月亮湖沉积物全岩有机碳同位素组成( δ13 Corg)、总有机碳含量(TOC)和总氮含量(TN)分析结果表明: δ13 Corg值分布范围为 -34.3 ‰ ~-24.8 ‰ ,具有9.5 ‰ 的变化幅度,但总体仍然在陆生C3植物的变化范围内。TOC含量分布范围为1.04 % ~23.55 % ,TN含量分布范围为0.08 % ~1.78 % ,TOC与TN含量变化趋势相同,呈正相关性,两者都显示出末次冰期晚期时含量特别低的特征。沉积物的 TOC/TN 比值(原子比)分布范围为6.3~28.2,其中末次冰期晚期的值比较低,说明沉积物中有机质以内源水生生物为主,其后 TOC/TN 比值明显升高且多>14,说明大部分有机质来源于汇水盆地中的陆生植物。根据多个指标综合分析,有效湿度的影响很可能是 δ13 Corg 变化的主导因素。因此,近2万年来月亮湖全岩有机碳同位素组成变化与古气候变化的对应关系是: 暖湿气候对应着偏负的 δ13 Corg值,冷干气候对应着偏正的 δ13 Corg值,全新世期间因植被变化不大,其 δ13 Corg值变化幅度也不大。  相似文献   

14.
The carbon and nitrogen isotope composition of organic matter has been widely used to trace biogeochemical processes in marine and lacustrine environments. In order to reconstruct past environmental changes from sedimentary organic matter, it is crucial to consider potential alteration of the primary isotopic signal by bacterial degradation in the water column and during early diagenesis in the sediments.In a series of oxic and anoxic incubation experiments, we examined the fate of organic matter and the alteration of its carbon and nitrogen isotopic composition during microbial degradation. The decomposition rates determined with a double-exponential decay model show that the more reactive fraction of organic matter degrades at similar rates under oxic and anoxic conditions. However, under oxic conditions the proportion of organic matter resistent to degradation is much lower than under anoxic conditions. Within three months of incubation the δ13C of bulk organic matter decreased by 1.6‰ with respect to the initial value. The depletion can be attributed to the selective preservation of 13C-depleted organic compounds. During anoxic decay, the δ15N values continuously decreased to about 3‰ below the initial value. The decrease probably results from bacterial growth adding 15N-depleted biomass to the residual material. In the oxic experiment, δ15N values increased by more then 3‰ before decreasing to a value indistinguishable from the initial isotopic composition. The dissimilarity between oxic and anoxic conditions may be attributed to differences in the type, timing and degree of microbial activity and preferential degradation. In agreement with the anoxic incubation experiments, sediments from eutrophic Lake Lugano are, on average, depleted in 13C (−1.5‰) and 15N (−1.2‰) with respect to sinking particulate organic matter collected during a long-term sediment trap study.  相似文献   

15.
We present a multi-proxy record (pollen, microscopic charcoal, magnetic susceptibility, carbon-isotopic composition, total organic carbon [TOC], carbon/nitrogen [C/N] ratios, and particle size) of the late Holocene environmental change and human activities from Bongpo marsh on the east coast of Korea. Mutual interaction between the environment and humans during the late Holocene has not been properly investigated in Korea due to the lack of undisturbed samples with high sedimentation rates. In this study, the history of human responses to late Holocene environmental changes is clearly reconstructed using a multi-proxy paleoenvironmental approach that has not previously been applied in Korea. The evidence from Bongpo marsh indicates that 1) Bongpo marsh began to develop ca. 650 BC as a coastal lagoon was rapidly filled with organic matter, 2) agricultural disturbance around the study site remained slight until ca. AD 600, 3) full-scale intensive agriculture prevailed and the area of deforestation increased between ca. AD 600 and ca. AD 1870, and 4) the land use changed from lowland rice agriculture to upland cultivation when agricultural productivity declined after AD 1870, probably due to severe deforestation and the consequent heavy influx of clastic sediment on rice fields, as described in various historical documents.  相似文献   

16.
Analyses of organic carbon, total nitrogen, and inorganically bound ammonium (exchangeable and fixed ammonium) in two oxic deep-sea sediment cores from the Central Pacific Ocean revealed insufficiently high inorganic ammonium contents of these sediments to explain the low C/N ratios, although representing 20–45% of the total nitrogen.Both, organic carbon/total nitrogen ratios (ranging from 3.9?1.3) and organic carbon/organic nitrogen ratios (5.6?1.9) decrease with increasing sediment depth, the latter indicating a real enrichment of organic nitrogen compounds during diagenesis relative to total organic matter.Organic matter/alumina relationships indicate that this unusual preservation of organic nitrogen compounds is probably caused by sorption to clay minerals protecting them against bacterial attack.  相似文献   

17.
巢湖富营养化过程的沉积记录   总被引:33,自引:3,他引:30  
姚书春  李世杰 《沉积学报》2004,22(2):343-347
土地利用和人类活动加剧所导致的营养元素输入的增加是引起湖泊富营养化趋势增强的重要原因。巢湖沉积钻孔柱状样中总有机碳和总氮自20世纪70年代以来呈明显升高趋势,分别增加了2.5、2.9倍。由柱状样中的TOC/TN比值、TARHC、OEP判断得出,19世纪末到20世纪40年代中期TOC是陆源和内源两种来源并重;20世纪40年代中期到20世纪70年代初期以陆源为主,并可能存在石油污染;20世纪70年代以来沉积物有机质中藻类来源的有机质占主要地位。巢湖沉积柱状样的研究表明20世纪70年代以来巢湖富营养化开始恶化。  相似文献   

18.
《Gondwana Research》2014,25(3):1057-1069
The appearance of multicellular animals and subsequent radiation during the Ediacaran/Cambrian transition may have significantly changed the oceanic ecosystem. Nitrogen cycling is essential for primary productivity and thus its connection to animal evolution is important for understanding the co-evolution of the Earth's environment and life. Here, we first report on coupled organic carbon and nitrogen isotope chemostratigraphy from the entire Ediacaran to Early Cambrian period by using drill core samples from the Yangtze Platform, South China. The results show that δ15NTN values were high (~ + 6‰) until middle Ediacaran, gradually dropping down to − 1‰ at the earliest Cambrian, then rising back to + 4‰ in the end of the Early Cambrian. Organic carbon and nitrogen contents widely varied with a relatively constant C/N ratio in each stratigraphic unit, and do not apparently control the carbon and nitrogen isotopic trends. These observations suggest that the δ15NTN and C/N trends mainly reflect secular changes in nitrogen cycling in the Yangtze Platform. Onset of the observed negative N isotope excursion coincided with a global carbon isotope excursion event (Shuram excursion). Before the Shuram event, the high δ15N probably reflects denitrification in a nitrate-limited oceanic condition. Also, degradation of dissolved and particulate organic matter could be an additional mechanism for the 15N-enrichment, and may have been significant when the ocean was rich in organic matter. At the time of the Shuram event, both δ13Ccarb and δ15NTN values were dropped probably due to massive re-mineralization of organic matter. This scenario is supported by an anomalously low C/N ratio, implying that enhanced respiration resulted in selective loss of carbon as CO2 with recycled organic nitrogen. After the Shuram event, the δ15N value continued to decrease despite that δ13Ccarb rose back to + 4‰. The continued δ15N drop appears to have coincided with a decreasing phosphorus content in carbonate. This suggests that ocean oxygenation may have generated a more nitrate-rich condition with respect to phosphorus as a limiting nutrient. Similar to the Shuram event, another negative δ13Ccarb event in the Canglanpuan stage of the Early Cambrian is also characterized by carbon isotopic decoupling as well as the low C/N ratio. The results strongly support that the two stages of the decoupled negative δ13Ccarb excursions reflect a disappearance of a large organic carbon pool in the ocean. The two events appear to relate with the appearance of new metazoan taxa with novel feeding strategies, suggesting a link between ocean oxygenation, nutrient cycling and the appearance and adaptation of metazoans. The nitrogen isotope geochemistry is very useful to understand the link between the environmental, ecological and biological evolutions.  相似文献   

19.
A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake’s hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ18O values decrease. Past lake-water δ18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ18O, supplemented by those in carbonate and organic δ13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ~AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ~AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ18O, a similarly small, stratified, alkaline lake located ~250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.  相似文献   

20.
古海洋研究中的地球化学新指标   总被引:30,自引:4,他引:30  
有机地球化学与微量元素地球化学古环境指标及其相关的同位素指标已成为追溯古全球变化与古海洋生物地球化学演化的有力工具。从古环境替代指标的示踪原理和应用的角度,综述了有孔虫碳同位素、有机地球化学整体指标、生物标志化合物、单体有机分子同位素、微量元素等在古海洋古环境研究中的应用及相关的研究动态与进展。指出古海洋研究正从以恢复古海洋的物理参数(温度、盐度、古洋流等)为主,向着揭示古水团演化、古生产力、古营养状况、碳贮库及碳循环等古生物地球化学演化过程方向纵深发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号