首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
以DEM数据资料为基础,采用GIS手段对贵阳地面坡度、破碎程度等地貌要素进行定量分析,并指出贵阳城市形态、用地供给条件、道路系统和绿地系统等布局和建设都受到喀斯特地貌的影响.贵阳山高坡陡,地形破碎、地下喀斯特发育、灾害隐患多,导致城市空间布局分散、城市用地供给量少质差、道路和绿地系统建设难度大;而用地条件差和组团式分散布局特征又使城市化经济成本偏高,这些问题将给贵阳城市的发展建设带来负面影响.为此,在今后的城市建设中,应强化高效集约利用土地资源和选择紧凑型城市结构、公交优先的交通模式等策略,以缓解城市建设用地紧张状况和降低城市化经济成本,此外,还应注意加强城市地貌环境管理,并对城市不同区域进行空间管制,以保证城市与地貌环境协调发展.  相似文献   

2.
A model, based on the in situ physiological characteristics of methanogens and sulfate reducers, was developed to describe the distribution of methanogenesis and sulfate reduction in freshwater sediments. The model predicted the relative importance of methane production and sulfate reduction in lakes of various trophic status and generated profiles of sulfate, acetate, methanogenesis, and sulfate reduction comparable to the profiles that are expected based on field studies. The model indicated that at sulfate concentrations greater than 30μM a sulfate-reducing zone develops because sulfate reducers maintain acetate concentrations too low for methanogens to grow. At lower sulfate concentrations a methanogenic zone develops because the dual limitations of low sulfate concentrations and acetate consumption by methanogens prevents sulfate reducers from growing. The model and a compilation of previously published field data indicate that, within the reported range of sulfate concentrations, the relative importance of methanogenesis and sulfate reduction in freshwater sediments is primarily dependent upon the rates of organic matter decomposition.  相似文献   

3.
The effect of dissolved sulfate concentration on the rate of bacterial sulfate reduction in marine sediment from Long Island Sound was examined using a radio-sulfur technique. The experimental results show that the rate is independent of the dissolved sulfate concentration until low levels are reached (<3 mM), and that, when interpreted using a Monod-type rate law, a saturation constant, Ks, of 1.62 ± 0.16 M results. This weak dependence implies that the dissolved sulfate exerts only a limited influence on the rate of sulfate reduction in marine sediments. Given such a weak dependence, dissolved sulfate profiles in marine sediments must resemble profiles generated by models with sulfate independent kinetics. Initially, this would suggest that currently used sulfate-independent diagenetic models are appropriate in modelling sulfate profiles. However, comparison of these models with those containing weak sulfate-dependent kinetic terms shows that there exists considerable disagreement between these models when the parameter grouping (Dsk)12/w is larger than ~0.2 and smaller than ~3.0. (Here Ds is the SO;4 diffusion coefficient, k the organic matter decay constant and w the sediment burial velocity.) When the currently used models are corrected by employing physically meaningful boundary conditions, this divergence disappears. The modelling results, therefore, confirm the conclusion that any sulfate dependence inherent to the reduction kinetics does not appreciably affect sulfate pore water profiles, and that previous diagenetic studies using strong sulfate dependent models are erroneous.  相似文献   

4.
The distribution characteristics of heavy metals in Guiyang urban soils   总被引:1,自引:0,他引:1  
Guiyang is located in southwestern China,which is a famous tourism city,and is awarded the title of"the Summer Capital of China".A study on heavy metals in Guiyang urban soils was conducted.The results showed that the concentrations of Cd,Cu,Ni,Pb and Zn in Guiyang urban soils are significantly higher than their background values and Cu,Zn and Pb in Guiyang soils are accumulated seriously.The distribution characteristics of heavy metals in 3 districts are described as follows:the level of heavy metals in soils follows the order of Nanming District> Yunyan District>Xiaohe District.The spatial distribution of metals in urban soils of Guiyang shows that the level of metals in the central and eastern parts of Guiyang is relatively high,and its characteristics are attributed to the influence of commercial activities,heavy traffic and industrial emission.Compared with some other cities in China,Guiyang is characterized by relatively high accumulation level of Cd,Cu,and Zn in its soils.  相似文献   

5.
TSR(硫酸盐热化学还原反应)是高含硫化氢天然气形成的重要途径,是指烃类在高温条件下将硫酸盐还原生成H2S、CO2等酸性气体的过程。由于硫化氢的剧毒和强腐蚀性,在石油天然气行业的钻井、完井、修井、净化加工以及运输等各个方面的危害一直备受人们的关注,对硫化氢和TSR的评价一直是负面的,在油气勘探中更多是在回避。最近研究发现,TSR作用对石油天然气工业具有重要的积极作用。TSR的发生,首先需要硫酸盐类溶解提供SO42-,储集空间得到初步改善;其次TSR反应形成的硫化氢,溶于水后显示出较强的酸性溶蚀作用,对白云岩储层具有最佳的溶蚀效果。在高温条件和储层中地层水的作用下,硫化氢与白云岩发生较强烈的酸性流体-岩石相互作用(水岩反应),促进了白云岩次生孔洞的发育和高孔高渗优质储集层的形成,使油气储层保存下限增大和深部天然气聚集成藏成为可能。而目前飞仙关组高含硫化氢气藏普遍压力系数小、充满度低,这与TSR及硫化氢对储层溶蚀导致储集空间增容有关。四川盆地油气勘探结果证实,所有高含硫化氢天然气藏均对应了次生孔隙十分发育的优质储层,岩性主要以白云岩为主,储层埋藏深度超过8 000 m时依然发育优质储层。  相似文献   

6.
利用高压釜反应装置,在一定温度和压力下,对正十六烷与硫酸镁热化学还原反应含水体系进行了模拟,通过气相色谱仪、微库仑仪、毛细管气相色谱,脉冲火焰光度检测器、红外光谱仪及X射线衍射仪对气、油、固三相产物分别进行了分析,并进行了动力学研究.结果表明,该体系在温度为450~550℃时可以发生反应,主要生成氧化镁、硫、焦炭、硫化...  相似文献   

7.
The role of labile sulfur compounds in thermochemical sulfate reduction   总被引:1,自引:0,他引:1  
The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S°, organic S) at temperatures of 330 and 356 °C under a constant confining pressure. The in-situ pH was buffered to 3.5 (∼6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (∼0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of organic LSC creates free-radicals that in turn might initiate a radical chain-reaction that creates more reactive species. Experiments involving radical initiators, such as diethyldisulfide and benzyldisulfide, did not show an increase in reactivity compared to 1-pentanethiol. Therefore, we conclude that none of these can sufficiently explain our observations of the initial stages of TSR; they may, however, be important in the later stages. In order to gain greater insight into the potential mechanism for the observed reactivity of these organic sulfur compounds during TSR, we applied density functional theory-based molecular modeling techniques to our system. The results of these calculations indicate that 1-pentanethiol or its thermal degradation products may directly react with sulfate and reduce the activation energy required to rupture the first S-O bond through the formation of a sulfate ester. This study demonstrates the importance of labile sulfur compounds in reducing the onset timing and temperature of TSR. It is therefore essential that labile sulfur concentrations are taken into consideration when trying to make accurate predictions of TSR kinetics and the potential for H2S accumulation in petroleum reservoirs.  相似文献   

8.
甲烷和固态硫酸钙的热化学还原反应模拟实验初步研究   总被引:14,自引:4,他引:14  
碳酸盐岩地层中常伴有硫酸盐岩的沉积,在一定的温度和压力条件下,干酪根热降解生成的气态烃与硫酸盐岩接触后发生热化学还原反应(简称为TSR反应),使气态烃消失,这可能是造成生气死亡线的主要原因之一。本文对CH4-CaSO4热化学还原反应的热力学问题进行了探讨,发现该反应能够自发进行,而且升高温度对反应有利。利用高温高压模拟装置对CH4-CaSO4反应体系进行了初步的模拟实验研究,通过微库仑、气相色谱和傅里叶变换红外光谱(FT-IR)等分析手段对实验结果进行了进一步验证。结果表明,甲烷和固态硫酸钙能够发生热化学还原反应,生成硫化氢、碳酸钙和水。最后,将CH4-CaSO4反应体系同国内外的研究工作进行了对比,认为本实验研究能够更好地补充和完善TSR反应体系,解释地质条件下工业气藏的死亡线问题。  相似文献   

9.
The accumulation of high H2S concentrations in oil and gas fields is usually associated with deeply buried high-temperature carbonate reservoirs and is attributed to the abiological oxidation of hydrocarbons by sulfate – thermochemical sulfate reduction (TSR). This review aims at providing an overview of the literature and assessing existing uncertainties in the current understanding of TSR processes and their geological significance. Reaction pathways, various reaction products, the autocatalytic nature of TSR, and reaction kinetics are discussed. Furthermore, various criteria for recognizing TSR effects, such as petrographic/diagenetic alterations and stable isotope geochemistry of the inorganic as well as the organic reactants, are summarized and evaluated. There is overwhelming geological evidence of TSR taking place at a minimum temperature of 110–140?°C, but the temperature discrepancy between experimental data and nature still exists. However, the exact nature and mechanisms of catalysts which influence TSR are not known. Local H2S variations may reflect steady-state conditions dominated by H2S buildups and flux out of the system. The latter is controlled by lithological and geological factors.  相似文献   

10.
为提高贵阳市在大力建设生态文明背景下的居住用地集约利用水平,在大力建设生态文明背景下,以贵阳市居住用地为研究对象,从土地的利用强度、投入状况、产出状况、生态文明度四方面建立指标体系,评价贵阳市居住用地集约利用度与集约利用类型。研究表明:评价区域低度与中度利用比例较高,集约与高度利用比例较低,居住用地过多占用耕地,绿化用地所占比例偏小,公共设施、基础设施建设薄弱,生态文明建设面临新的挑战。因此挖掘低利用区潜力、合理规划城市用地结构、建立合理监督机制、加强公共设施、基础设施和生态文明建设有助于提高生态文明背景下的居住用地集约利用水平。  相似文献   

11.
Three bacterial strains from the genus Shewanella were used to examine the influence of specific bacteria on the products of dissimilatory iron reduction. Strains CN32, MR-4 and W3-18-1 were incubated with HFO (hydrous ferric oxide) as the terminal electron acceptor and lactate as the organic carbon and energy source. Mineral products of iron reduction were analyzed using X-ray powder diffraction, electron microscopy, coulometry and susceptometry. Under identical nutrient loadings, iron reduction rates for strains CN32 and W3-18-1 were similar, and about twice as fast as MR-4. Qualitative and quantitative assessment of mineralized end products (secondary minerals) indicated that different products were formed during experiments with similar reduction rates but different strains (CN32 and W3-18-1), and similar products were formed during experiments with different iron reduction rates and different strains (CN32 and MR-4). The major product of iron reduction by strains CN32 and MR-4 was magnetite, while for W3-18-1 it was a mixture of magnetite and iron carbonate hydroxide hydrate (green rust), a precursor to fougerite. Another notable difference was that strains CN32 and MR-4 converted all of the starting ferric iron material into magnetite, while W3-18-1 did not convert most of the Fe3+ into a recognizable crystalline material. Biofilm formation is more robust in W3-18-1 than in the other two strains used in this study. The differences in mineralization may be an indicator that EPS (or another cellular product from W3-18-1) may interfere with the crystallization of magnetite or facilitate formation of green rust. These results suggest that the relative abundance of mineral end products and the relative distribution of these products are strongly dependent on the bacterial species or strain catalyzing iron reduction.  相似文献   

12.
冉文瑞 《贵州地质》2007,24(4):318-321
根据实地调查资料和分析研究认为,乌当区朱昌镇乃村发生房屋开裂、地裂缝及地面塌陷等地质灾害,主要原因是地下采煤活动及抽取深层地下水引发,乃人为过度开发活动引起的地质灾害,危及村民的生命财产安全。建议采用避让搬迁措施。  相似文献   

13.
Kinetics of microbial sulfate reduction in estuarine sediments   总被引:2,自引:0,他引:2  
Kinetic parameters of microbial sulfate reduction in intertidal sediments from a freshwater, brackish and marine site of the Scheldt estuary (Belgium, the Netherlands) were determined. Sulfate reduction rates (SRR) were measured at 10, 21, and 30 °C, using both flow-through reactors containing intact sediment slices and conventional sediment slurries. At the three sites, and for all depth intervals studied (0-2, 2-4, 4-6 and 6-8 cm), the dependence of potential SRR on the sulfate concentration followed the Michaelis-Menten rate equation. Apparent sulfate half-saturation concentrations, Km, measured in the flow-through reactor experiments were comparable at the freshwater and marine sites (0.1-0.3 mM), but somewhat higher at the brackish site (0.4-0.9 mM). Maximum potential SRR, Rmax, in the 0-4 cm depth interval of the freshwater sediments were similar to those in the 0-6 cm interval of the marine sediments (10-46 nmol cm−3 h−1 at 21 °C), despite much lower in situ sulfate availability and order-of-magnitude lower densities of sulfate-reducing bacteria (SRB), at the freshwater site. Values of Rmax in the brackish sediments were lower (3.7-7.6 nmol cm−3 h−1 at 21 °C), probably due to less labile organic matter, as inferred from higher Corg/N ratios. Inflow solutions supplemented with lactate enhanced potential SRR at all three sites. Slurry incubations systematically yielded higher Rmax values than flow-through reactor experiments for the freshwater and brackish sediments, but similar values for the marine sediments. Transport limitation of potential SRR at the freshwater and brackish sites may be related to the lower sediment porosities and SRB densities compared to the marine site. Multiple rate controls, including sulfate availability, organic matter quality, temperature, and SRB abundance, modulate in situ sulfate-reducing activity along the estuarine salinity gradient.  相似文献   

14.
We used a combination of porewater and solid phase analysis, as well as a series of sediment incubations, to quantify organic carbon oxidation by dissimilatory Fe reduction, Mn reduction, and sulfate reduction, in sediments from the Skagerrak (located off the northeast coast of Jutland, Denmark). In the deep portion of the basin, surface Mn enrichments reached 3.5 wt%, and Mn reduction was the only important anaerobic carbon oxidation process in the upper 10 cm of the sediment. In the less Mn-rich sediments from intermediate depths in the basin, Fe reduction ranged from somewhat less, to far more important than sulfate reduction. Most of the Mn reduction in these sediments may have been coupled to the oxidation of acid volatile sulfides (AVS), rather than to dissimilatory reduction. High rates of metal oxide reduction at all sites were driven by active recycling of both Fe and Mn, encouraged by bioturbation. Recycling was so rapid that the residence time of Fe and Mn oxides, with respect to reduction, ranged from 70-250 days. These results require that, on average, an atom of Fe or Mn is oxidized and reduced between 100-300 times before ultimate burial into the sediment. We observed that dissolved Mn2+ was completely removed onto fully oxidized Mn oxides until the oxidation level of the oxides was reduced to about 3.8, presumably reflecting the saturation by Mn2+ of highly reactive surface adsorption sites. Fully oxidized Mn oxides in sediments, then, may act as a cap preventing Mn2+ escape. We speculate that in shallow sediments of the Skagerrak, surface Mn oxides are present in a somewhat reduced oxidation level (< 3.8) allowing Mn2+ to escape, and perhaps providing the Mn2+ which enriches sediments of the deep basin.  相似文献   

15.
The transformation of atmospherically deposited inorganic Hg to the toxic, organic form methylmercury (MeHg) is of serious ecological concern because MeHg accumulates in aquatic biota, including fish. Research has shown that the Hg methylation reaction is dependent on the availability of SO4 (as an electron acceptor) because SO4-reducing bacteria (SRB) mediate the biotic methylation of Hg. Much less research has investigated the possible organic C limitations to Hg methylation (i.e. from the perspective of the electron donor). Although peatlands are long-term stores of organic C, the C derived from peatland vegetation is of questionable microbial lability. This research investigated how both SO4 and organic C control net MeHg production using a controlled factorial addition design in 44 in situ peatland mesocosms. Two levels of SO4 addition and energetic-equivalent additions (i.e. same number of electrons) of a number of organic C sources were used including glucose, acetate, lactate, coniferous litter leachate, and deciduous litter leachate. This study supports previous research demonstrating the stimulation of MeHg production from SO4 input alone (∼200 pg/L/day). None of the additions of organic C alone resulted in significant MeHg production. The combined addition of SO4 and some organic C sources resulted in considerably more MeHg production (∼500 pg/L/day) than did the addition of SO4 alone, demonstrating that the highest levels of MeHg production can be expected only where fluxes of both SO4 and organic C are delivered concurrently. When compared to a number of pore water samples taken from two nearby peatlands, MeHg concentrations resulting from the combined addition of SO4 and organic C in this study were similar to MeHg “hot spots” found near the upland–peatland interface. The formation of MeHg “hot spots” at the upland–peatland interface may be dependent on concurrent inputs of SO4 and organic C in runoff from the adjacent upland hillslopes.  相似文献   

16.
Cities as crystalisations of civilizations represent symbolic impact in their layout and architecture. Built environment in this sense has an symbolic impact. Intending to understand a civilization it can be helpful to look at these symbols. This article tries to demonstrate the changing symbols in different historic periods of Latin America. Symbols were to be found in the urban morphology of even the precolumbian cities. They changed within the colonial era, and again during the different influences of French, British or North American domination. Today there can be noticed a decline of the traditional symbolic elements of towns. On the other hand there are certain symptoms of a crisis of self-identity of the Latin Americans. So even the diverse ideas how to define a new image are to be seen in the built environment of main cities of various states. shortened version of a presentation to the Meeting of the Association of Pacific Coast Geographers at Eugene, Oregon, September 12, 1986 I wish to thank my friend William S. Preston, Department of Geography, Calif. Polytechnic State Univ. San Luis Obispo, for his patience helping me to translate this article. It was a pleasure to have a competent translater and partner of discussion.  相似文献   

17.
硫酸盐热化学还原作用的启动机制研究   总被引:1,自引:0,他引:1  
硫酸盐热化学还原作用(TSR)是导致高含硫化氢天然气生成和聚集、碳酸岩盐储层酸化和溶蚀的重要因素,是地质盆地内烃-水-岩三者之间的复杂反应。本文利用黄金管热模拟实验,对TSR反应的可能启动机制及控制因素进行了研究。通过不同盐溶液与原油的热解实验,证实了硫酸盐的存在是启动TSR反应的必要因素,MgSO4比CaSO4和Na2SO4更容易启动TSR反应,体系中盐度的增加会加速H2S的生成。实验结果表明,不同水介质条件下,TSR反应的程度与溶液的离子强度呈正相关,弱酸性环境并不足以启动TSR反应;原油中不稳定含硫化合物的含量越高越有利于TSR反应的发生,饱和链烷烃比原油中其它组分更容易引发TSR反应,且大分子烷烃比小分子烷烃更容易被硫酸盐氧化。  相似文献   

18.
Sulfur isotope fractionation during dissimilatory sulfate reduction has been conceptually described by the widely accepted Rees model as related to the stepwise reduction of sulfate to sulfide within the cells of bacteria. The magnitude of isotope fractionation is determined by the interplay between different reduction steps in a chain of reactions. Here we present a revision of Rees’ model for bacterial sulfate reduction that includes revised fractionation factors for the sulfite-sulfide step and incorporates new forward and reverse steps in the reduction of sulfite to sulfide, as well as exchange of sulfide between the cell and ambient water. With this model we show that in contrast to the Rees model, isotope fractionations well in excess of −46‰ are possible. Therefore, some of the large sulfur isotope fractionations observed in nature can be explained without the need of alternate pathways involving the oxidative sulfur cycle. We use this model to predict that large fractionations should occur under hypersulfidic conditions and where electron acceptor concentrations are limiting.  相似文献   

19.
20.
 Pore water concentration profiles of sediments at a site on the Amazon Fan were investigated and simulated with the numerical model CoTReM (column transport and reaction model) to reveal the biogeochemical processes involved. The pore water profiles for gravity core GeoB 4417-7 showed a distinct sulfate–methane transition zone in which deep sulfate reduction occurs. Only a small sulfide peak could be observed at the reaction zone. Due to high amounts of iron minerals, the produced sulfide is instantaneously precipitated in form of iron sulfides. We present a simulation which starts from a steady state system with respect to pore water profiles for methane and sulfate. Furthermore, sulfide, iron, pH, pE, calcium and total inorganic carbon (TIC) were included in the simulation. The program calculated mineral equilibria to mackinawite, iron sulfides (more stable than mackinawite), iron hydroxides and calcite via saturation indices (SI) by a module incorporating the program PHREEQC (Parkhurst 1995). The measured sulfide and iron profiles are obtained in the simulation output by using a constant SI (=0) for mackinawite and calcite, while a depth dependent SI distribution is applied for the PHREEQC phases “Pyrite” and “Fe(OH)3(a)”, representing a composition and the kinetics of different iron sulfides and iron hydroxides. These SI distributions control the results of sulfide and iron pore water profiles, especially conserving the sulfide profile at the reaction zone during the simulation. The results suggest that phases of iron hydroxides are dissolved, mackinawite is precipitated within, and other iron sulfides are precipitated below the reaction zone. The chemical reactivity of iron hydroxides corresponds to the rate of sulfide production. The system H2O–CO2–CaCO3 is generally successfully maintained during the simulation. Deviations to the measured pH profile suggest that further processes are active which are not included in the simulation yet. Received: 9 November 1998 / Accepted: 26 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号