首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
刘尚仁 《热带地理》2007,27(1):6-10
依据广东西部超过18条河流、39处河流阶地、至少35个14C、热释光的冲积层测龄数据等情况,可知粤西最多有4级河流阶地(不包括湛江组和北海组阶地);多数河流最高阶地靠近现代主河床分布,深切曲流中有河流阶地,反映近数十万年来河床改道不大;西江在封开有广东高度最高(76 m)的河流阶地,而广东高度最高的地下河阶地是111 m,大致显示出地面与地下剥蚀强度的差异;通常山区河流长度越大,河漫滩和河流阶地的高度越大,河流阶地的级数和级别也常增加;在河流上游的下段和中游的上段,河流阶地的高度最大且级数也最多;在晚更新世之前与后,河谷中下游地区的新构造运动趋势由上升变为稳定或沉降;连滩盆地是广东全新世构造沉降最典型的山间盆地。  相似文献   

2.
长江三峡阶地的成因机制   总被引:15,自引:0,他引:15  
根据对长江三峡阶地堆积物进行的野外调查与室内分析发现三峡阶地的成因具有以下特点:构成阶地上部的河漫滩相堆积、中部的冲积砾石层与作为阶地基座的基岩平台是在不同时期形成的;阶地上部河漫滩相堆积是在中全新世气候温暖、长江三峡高水位条件下形成的.因此,长江三峡阶地是在构造上升的基础上由于气候及长江三峡流量及水位变化而形成的,并非一定是间歇性构造上升的标志.  相似文献   

3.
The terrace evolution history is considered for the Goloustnaya river during the Holocene after a seismic impact on the detrital fan when it descended below the water level of Lake Baikal. Radiocarbon analysis data have been used to calculate the mean accumulation rates of alluvial deposits and the buildup of peat.  相似文献   

4.
The Late Glacial and Holocene geomorphology of the Manx uplands has received scant attention in previous researches. Solifluction deposits and terraces provide the earliest evidence for geomorphic activity after deglaciation. Fluvial incision into drift-choked valleys is correlated with the formation of the large mountain front alluvial fans that flank the Manx uplands. Formation of these alluvial fans is constrained to 15,000–10,500 cal. years BP by 14C dates on organic deposits beneath and above the alluvial fan gravels. Alluvial fan and river terraces along four valleys postdate this incision. Optically Stimulated Luminescence (OSL) and 14C dating provide a tentative chronology for these landforms. The higher terraces are Late Glacial fluvial surfaces that were probably occupied by rivers into the Holocene. Incision during the Late Holocene led to the abandonment of the higher surfaces, producing a suite of younger river terraces and alluvial fan surfaces. Independent dating constrains this fluvial activity to post-Bronze Age (3500–2800 cal. years BP). Increased human activity and climatic change during the Late Holocene are possible causes for this increased geomorphic activity.  相似文献   

5.
一万年来白洋淀的扩张与收缩   总被引:5,自引:0,他引:5  
本文探讨了一万年来的全新世期间,白洋淀兴起、扩张和收缩的变迁过程,恢复了各个发展阶段的古湖淀范围,论述了相应时期的古环境特征,指出了白洋淀令后的演变趋势。  相似文献   

6.
The Nysa K odzka river drainage basin in the Sudeten Mts., SW Poland, preserves a complex late Cainozoic succession that includes eight fluvial series or terraces and deposits from two glacial episodes as well as local volcanic rocks, slope deposits and loess. Fluvial sedimentation took place during the Late Pliocene and from the early Middle Pleistocene (Cromerian), with a long erosion phase (gap) during the Early Pleistocene. Fluvial series are dated to the Late Pliocene, Cromerian, Holsteinian, late Saalian/Eemian, Weichselian, and the Holocene. Glacial deposits represent the early Elsterian and early Saalian stages. Almost all these stratigraphic units have been observed in all geomorphic zones of the river: the mountainous K odzko Basin, the Bardo Mts. (Bardo gorge) and in the mountain foreland. The main phase of tectonic uplift and strong erosion was during the Early Pleistocene. Minor uplift is documented also during the post-early Saalian and probably the post-Elsterian. The post-early Saalian and post-Elstrian uplift phases are probably due to glacio-isostatic rebound. The Quaternary terrace sequence was formed due to base-level changes, epigenetic erosion after glaciations and neotectonic movements. The Cromerian fluvial deposits/terraces do not indicate tectonic influence at all. All other Quaternary terraces indicate clear divergence, and the post-early Saalian terraces also show fault scarps. The fluvial pattern remained stable, once formed during the Pliocene, with only minor changes along the uplifted block along the Bardo gorge, inferring an antecedent origin for the Bardo gorge. Only during the post-glacial times, have epigenetic incisions slightly modified the valley.  相似文献   

7.
The Rio Negro has responded significantly in the Late Pleistocene and Holocene to lagged environmental changes largely associated with activity during the last glacial in the Amazon basin. On the basis of geological structure, the Rio Negro can be divided into six distinct reaches that each reflects very marked differential processes and geomorphological styles. No deposits of the Upper Pleniglacial were recognized in the field. The oldest recognizable Late Pleistocene alluvial unit is the Upper Terrace of Middle Pleniglacial age (ca. 65–25 ka) (reach I), tentatively correlated with the oldest terrace identified on the left bank of reach III. At that time, the river was mainly an aggradational bed load system carrying abundant quartz sand, a product of more seasonal conditions in the upper catchment. The late glacial (14–10 ka) is represented by a lower finer-grained terrace along the upper basin (reach I), which was recognized in the Tiquié, Curicuriarí, and Vaupes rivers. At that time, the river carried abundant suspended load as a response to climatic changes associated with deglaciation.Since about 14 ka, the river has behaved as a progradational system, infilling in downstream series a sequence of structurally controlled sedimentary basins or ‘compartments,’ creating alluvial floodplains and associated anabranching channel systems. Reach II was the first to be filled, then reach III, both accumulating mainly sand. Fine deposits increase downstream in reach III and become predominant in some anabranch islands of the distal reach. The lowermost reaches of the Negro (V and VI) have been greatly affected by a rising base level and associated backwater effect from aggradation of the Amazon during late glacial and recent times. Reach V has acted almost entirely as a fine sediment trap. The remarkable Anavilhanas archipelago is the product of Holocene deposition in the upper part of this sedimentary basin; however, suspended sediment load declined about 1.5 ka, prior to the lower part of this basin becoming infilled.The progradational behavior of the Rio Negro, filling tectonic basins as successive sediment traps with sand in the upper basins and fines in the downstream ones, illustrates how a large river system responses to profound changes in Late Quaternary base level and sediment supply. The most stable equilibrium conditions have been achieved in the Holocene in reaches IIb and IIIa, where an anabranching channel and erosional–relictual island system relatively efficiently convey water and sediment downstream. Reaches IIIb and V never achieved equilibrium conditions during the Holocene, characterised as they are today with incomplete floodplains and open water.  相似文献   

8.
Presented are the results from pedolithological investigations and reconstructions of the naturalclimatic events in the Early Holocene (radiocarbon age 10.3?8 ka; calendar age 11.7?8.8 ka) on the coast of Middle Baikal, based on data obtained by studying the structure, composition and properties of subaerial deposits and soils in terrestrial sections. A study was made of the numerous soil profiles and sections of geoarchaeological sites. The investigation revealed common features in the layered structure of the Early-Holocene portion of the terrestrial sections and evidence of climate warming represented by buried soils, signals of a cooling in the form of cryogenic fissures, and signals of drying in the form of aeolian drifts and evidence of deflation. It is shown that the Early Holocene was the time of cardinal changes in the nature of subaerial sedimentation (calcareous deposits were replaced by noncalcareous deposits) and the pedogenesis. Considerable cold storage from inherited permafrost and humidification of soils and earth materials with moisture from the thawing of permafrost were responsible for the specific character of soil formation, and for the spread of forest vegetation under a rather low atmospheric humidity. The phases of climate warming were accompanied by an intensification of soil formation with the production of soils of two types: early boreal, and boreal. Deluvial, colluvial and sometimes (in Priol’khonie) aeolian deposits accumulated during the cooling phases (Late Preboreal and Late Boreal). Small cryogenic fissures were generated. The issues of man’s adaptation to the cardinally changed natural conditions at the turn of the Pleistocene and Holocene and over the course of the Early Holocene are associated with the problem of Baikal’s water level and human settlement on its shores. The Lake Baikal stage at the end of the Late Neopleistocene was lower than at present; during the Early Holocene it was rising to reach at the late-boreal period the present-day level (or even exceeded it). The rises of Baikal’s stage at the Mid- and Late-Holocene period were causing scouring and destruction of the Early-Holocene sites that were located at lower elevations.  相似文献   

9.
西江的河流阶地与洪冲积阶地   总被引:1,自引:1,他引:0  
刘尚仁  彭华 《热带地理》2003,23(4):314-318
西江第一级阶地主要由Q3沉积构成,三水青歧以上属于可被洪水淹没的半埋藏阶地,与Q4河漫滩共同组成冲积平原,青歧以下属于西江三角洲下面的埋藏阶地.第二级阶地主要由Q2末期的冲积物组成,少量可延续到Q3初期;第三级阶地多由Q2中期的冲积物组成;第四级阶地仅在封开发现,是目前广东最高的河流阶地,由Q1末期或Q2初期的冲积物构成.西江两旁有老和新的两级洪冲积阶地,老阶地高出山前倾斜平原,主要由Q2洪冲积物组成,新阶地在山前倾斜平原呈埋藏和半埋藏状态,主要由Q3洪冲积物组成,与少量的Q4洪冲积物共同组成该山前倾斜平  相似文献   

10.
The Po River Basin, where accumulation and preservation of thick sedimentary packages are enhanced by high rates of tectonic subsidence, represents an ideal site to assess the relations between vertical changes in stratigraphic architecture and sediment accumulation rates. Based on a large stratigraphic database, a markedly contrasting stratigraphy of Late Pleistocene and Holocene deposits is reconstructed from the subsurface of the modern alluvial and coastal plains. Laterally extensive fluvial channel bodies and related pedogenically modified muds of latest Pleistocene age are unconformably overlain by Holocene overbank fines, grading seaward into paralic and nearshore facies associations. In the interfluvial areas, a stiff paleosol, dating at about 12.5–10 cal ky BP, marks the Pleistocene–Holocene boundary. Across this paleosol, aggradation rates (ARs) from 16 radiocarbon‐dated cores invariably show a sharp increase, from 0.1–0.9 mm year?1 to 0.9–2.9 mm year?1. Comparatively lower Pleistocene values are inferred to reflect fluvial activity under a low‐accommodation (lowstand and early transgressive) regime, whereas higher ARs during the Holocene are related to increasing accommodation under late transgressive and highstand conditions. Holocene sediment accumulation patterns vary significantly from site to site, and do not exhibit common trends. Very high accumulation rates (20–60 mm year?1) are indicated by fluvial channel or progradational delta facies, suggesting that extremely variable spatial distribution of Holocene ARs was primarily controlled by autogenic processes, such as fluvial channel avulsion or delta lobe switching. Contrasting AR between uppermost Pleistocene and Holocene deposits also are reported from the interfluves of several coeval, alluvial‐coastal plain systems worldwide, suggesting a key control by allogenic processes. Sediment accumulation curves from adjacent incised valley fills show, instead, variable shapes as a function of the complex mechanisms of valley formation and filling.  相似文献   

11.
黄土区沟谷发育与气候变化的关系(以洛川黄土塬区为例)   总被引:11,自引:2,他引:11  
黄土区沟谷侵蚀与气候变化有密切关系。黄土是干冷气候环境中堆积的地质体,只有在干冷时期才是稳定的。气候变湿润时黄土区发生冲沟侵蚀。洛川黄土塬区20万年以来至少出现过五次明显的侵蚀时期,该区河流的侵蚀与堆积过程恰好和冲沟发育过程相反,但两者在时间上可以较好地对比。  相似文献   

12.
Two adjacent upland floodplains are compared to establish the local response of floodplains to environmental change. Radiocarbon dating, the analysis of sedimentary exposures, terrace mapping, aerial photography and archaeological evidence are used to examine Late Quaternary valley fill sediments on the Afon Tanat and the Afon Vymwy in the Upper Severn Basin, Wales, UK.The alluvial stratigraphy of the two floodplain systems consists of Late Devensian (last glacial) fluvio-glacial sediments at the valley margins deposited under a braided outwash river regime. Holocene age terraces, with floodplain and palaeochannel deposits composed of gravels overlain by silty-sands, are inset into this older unit and were formed by meandering fluvial channel systems. A combination of field and laboratory data demonstrates that from the mid-late Holocene the two floodplain systems had divergent development. The Afon Vyrnwy has remained vertically stable for the last ca. 4000 yrs. whereas the adjacent Afon Tanat continued to be vertically and laterally active.Both floodplain systems have been affected by Late Quaternary climatic fluctuations and anthropogenic activity from the Bronze Age to the Roman period, but local geomorphic gradient controls, combined with a possibly greater focus of anthropogenic activity in the Tanat catchment, may explain the differential evolution of the two systems. The data demonstrate that multiple reach-scale studies are essential for revealing significant stages in the chronology and historical development of fluvial systems.  相似文献   

13.
Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4–3 (65–50 ka). Aridity then capped these plains with 4–7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path.A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet–dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.  相似文献   

14.
Mapping of late Quaternary geomorphic surfaces, and analysis of the soils and sediments buried within them, provides evidence for the history of a small study area within the Red Valley physiographic zone, Black Hills, South Dakota. Geomorphic thresholds for this grassland system are correlated with periods of major climatic change. Well-developed soils dating to the late Pleistocene and early Holocene (14,000 to 9000 yr B.P.) suggest more mesic conditions and geomorphic stability. A mid-Holocene Altithermal (ca. 8000 to 4500 yr B.P.) denudation almost completely stripped the landscape of earlier Holocene sediments and soils. A prolonged, mid-Holocene (ca. 4500 to 3600 yr B.P.) mesic period of landscape stability and soil development followed, but was abruptly terminated around 3600 yr BP. Late Holocene conditions approached stability about 1200 yr BP. After this time, alluvial terrace surfaces remained stable, while alluvial fans experienced periods of stability punctuated by midslope aggradation.  相似文献   

15.
In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 105–107 years. Over shorter times, <105 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 104-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated between bedrock incision and valley alluviation in response to changes in monsoon intensity and sediment flux. Stratigraphy and 14C ages of fill terrace deposits reveal a major alluviation, coincident with a monsoonal maximum, ca. 50–35 ky BP. Cosmogenic 10Be and 26Al exposure ages define an alluviation and reincision event ca. 9–6 ky BP, also at a time of strong South Asian monsoons. The terrace deposits that line the Lesser Himalayan channel are largely composed of debris flows which originate in the Greater Himalayan rocks up to 40 km away. The terrace sequences contain many cubic kilometers of sediment, but probably represent only 2–8% of the sediments which flushed through the Marsyandi during the accumulation period. At 104-year timescales, maximum bedrock incision rates are 7 mm/year in the Greater Himalaya and 1.5 mm/year in the Lesser Himalayan Mahabarat Range. We propose a model in which river channel erosion is temporally out-of-phase with hillslope erosion. Increased monsoonal precipitation causes an increase in hillslope-derived sediment that overwhelms the transport capacity of the river. The resulting aggradation protects the bedrock channel from erosion, allowing the river gradient to steepen as rock uplift continues. When the alluvium is later removed and the bedrock channel re-exposed, bedrock incision rates probably accelerate beyond the long-term mean as the river gradient adjusts downward toward a more “equilibrium” profile. Efforts to document dynamic equilibrium in active orogens require quantification of rates over time intervals significantly exceeding the scale of these millennial fluctuations in rate.  相似文献   

16.
The New River crosses three physiogeologic provinces of the ancient, tectonically quiescent Appalachian orogen and is ideally situated to record variability in fluvial erosion rates over the late Cenozoic. Active erosion features on resistant bedrock that floors the river at prominent knickpoints demonstrate that the river is currently incising toward base level. However, thick sequences of alluvial fill and fluvial terraces cut into this fill record an incision history for the river that includes several periods of stalled downcutting and aggradation. We used cosmogenic 10Be exposure dating, aided by mapping and sedimentological examination of terrace deposits, to constrain the timing of events in this history. 10Be concentration depth profiles were used to help account for variables such as cosmogenic inheritance and terrace bioturbation. Fill-cut and strath terraces at elevations 10, 20, and 50 m above the modern river yield model cosmogenic exposure ages of 130, 600, and 600–950 ka, respectively, but uncertainties on these ages are not well constrained. These results provide the first direct constraint on the history of alluvial aggradation and incision events recorded by New River terrace deposits. The exposure ages yield a long-term average incision rate of 43 m/my, which is comparable to rates measured elsewhere in the Appalachians. During specific intervals over the last 1 Ma, however, the New River's incision rate reached 100 m/my. Modern erosion rates on bedrock at a prominent knickpoint are between 28 and 87 m/my, in good agreement with rates calculated between terrace abandonment events and significantly faster than 2 m/my rates of surface erosion from ancient terrace remnants. Fluctuations between aggradation and rapid incision operate on timescales of 104− 105 year, similar to those of late Cenozoic climate variations, though uncertainties in model ages preclude direct correlation of these fluctuations to specific climate change events. These second-order fluctuations appear within a longer-term signal of dominant aggradation (until 2 Ma) followed by dominant incision. A similar signal is observed on other Appalachian rivers and may be the result of sediment supply fluctuations driven by the increased frequency of climate changes in the late Cenozoic.  相似文献   

17.
Soils and alluvial sediments in two wadi systems provide preliminary evidence of intense prehistoric soil erosion in the Plateau of Central Jordan. Magnetic susceptibility, color, secondary carbonate morphology, and soil structure suggest that, at the end of the Pleistocene, red Mediterranean soils (terra rossa soils) extended into areas that today are dry steppes on desert fringes. The chronological correlation between alluvial depositional events and cultural phases in the context of climatic change in the Levant suggests that climatic fluctuations at the end of the Pleistocene, which were characterized by gradual drying and warming, triggered several consecutive cycles of soil erosion. There is also evidence to suggest that the advent of early farming in the early Holocene played an important role in the continuation of soil erosion processes. The results of this preliminary research suggest that studies of ancient soil erosion in this region, red Mediterranean soils are a useful chronological and pedological datum to be correlated with alluvial and colluvial deposits. [Key words: soil erosion, alluvial sequences, red Mediterranean soils, Levant, Jordan, Middle East, soil properties.]  相似文献   

18.
We determined the sequence of formation of deposits on the first terrace above the Tarbagataika river floodplain, and a change of the sedimentation and soil-formation stages for the last 7 kyr. We reconstructed the accumulation dynamics of the sediment layer and calculated the mean sediment accumulation rates for different time intervals. The phases of intensification of erosion-accumulation and aeolian processes were recorded. The study revealed the main stratigraphic boundaries reflecting the fundamental changes of the settings of sedimentation: 7 cal. kyr BP, a change of riverbed sedimentation for floodplain sedimentation; 5.4 cal. kyr BP, intensification of erosion-accumulation processes due to climate aridization on the Atlantic-Subboreal boundary, and active input of erosion products to the floodplain; 4 cal. kyr BP, active filling of the river valley with horizontally layered polygenetic fine-grained sands and sandy loams containing intercalations of humic warps in conditions of the overlapped (built-up) floodplain with an increase in humidification in the middle of the Subboreal period and, as a consequence, an increase in the height of floods; 3.4 cal. kyr, the layer under investigation leaves the floodplain regime of sedimentation and accumulation of aeolian-deluvial deposits, and 1 cal. kyr, intensification of erosion-accumulation processes due to climatic and anthropogenic changes. We reconstructed the chronology and specific features of the pedogenesis stages which record the phases of temporal cessation of floodplain and slope sedimentation on the study territory. The results obtained are in good agreement with data on the hydraulicity of rivers, the stages of soil formation and on the manifestation of exogenous processes on the territories of Russia and Mongolia.  相似文献   

19.
Exploration data for different-order river crossings on the Lena-Katanga Plateau (northern Irkutsk oblast) were used to identify, according to the occurrence conditions of bedrocks, weathering crusts and alluvial deposits, three types of structure of river valley bottoms. In the geological evolution history of loose deposits in the valleys, six stages were determined, which occurred mostly during the Holocene. Karst lakes evolved into existence along tectonic fault lines in the river valleys at that time period which complicated their structure.  相似文献   

20.
《Geomorphology》2007,83(1-2):14-28
The southern part of the Pakua tableland in Taiwan comprises a series of wide, unpaired river terraces that have as many as six altitude levels, from PK-1 (highest) to PK-6 (lowest). The terrace surfaces are covered with lateritic soils. This study described, sampled and analyzed the soils from each terrace. Soil taxonomies are Oxisol, Ultisol and Inceptisol. Soil morphological characteristics were quantified as a profile development index (PDI) to determine the degree of soil development. The chemical analyses included cation exchange capacity (CEC) and selected extraction of Fe in soils. Based on the degree of soil development, surface deposits on terrace flights form the post-incisive soil chronosequence, supporting the hypothesis of terrace formation by fluvial processes. Soil ages were estimated based on iron crystallinity (Fed–Feo)/Fet. Analytical results indicate that river terraces in the Pakua tableland are aged 40–400 ka. The long-term uplift rate of the tableland can be estimated using terrace ages and folding geometry. The variation of uplift rates demonstrates that the landscape underwent increased shortening of frontal thrusting by the Changhua Fault running beneath the tableland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号