首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we report the occurrence of some uncommon mineral assemblages including pääkönenite, aurostibite, native arsenic, native antimony, and native bismuth found in the Baogutu gold deposit in the western Junggar, Xinjiang, NW China. The mineralization could be generally subdivided into two types: the gold-bearing quartz-vein type mineralization and disseminated mineralization in the wall rocks. The sulfide minerals in gold lodes commonly include pyrite, arsenopyrite, marcasite, and stibnite. However, the L7 lode in No. 4 orebody and the L1 lode in No. 11 orebody of the Baogutu gold deposit are quite different in terms of their mineral assemblages. The L7 lode contains native arsenic–quartz veins in shallow levels and stibnite–quartz veins at depth. Gold-bearing minerals (electrum, native gold, and rarely aurostibite) mainly coexist with pääkönenite, stibnite, native arsenic, and native antimony. The crystallization of As- and Sb-bearing minerals was likely to have consumed H2S from the hydrothermal fluid, which probably triggered the precipitation of native gold. The L1 lode consists of several discontinuous sulfide-dominated lensoid orebodies. The massive sulfide ores that produced most of the gold resource are characterized by an intimate association between native bismuth and native gold mineralization.  相似文献   

2.
Mineralogic studies of major ore minerals and fluid inclusion analysis in gangue quartz were carried out for the for the two largest veins, the Aginskoe and Surprise, in the Late Miocene Aginskoe Au–Ag–Te deposit in central Kamchatka, Russia. The veins consist of quartz–adularia–calcite gangue, which are hosted by Late Miocene andesitic and basaltic rocks of the Alnei Formation. The major ore minerals in these veins are native gold, altaite, petzite, hessite, calaverite, sphalerite, and chalcopyrite. Minor and trace minerals are pyrite, galena, and acanthine. Primary gold occurs as free grains, inclusions in sulfides, and constituent in tellurides. Secondary gold is present in form of native mustard gold that usually occur in Fe‐hydroxides and accumulates on the decomposed primary Au‐bearing tellurides such as calaverite, krennerite, and sylvanite. K–Ar dating on vein adularia yielded age of mineralization 7.1–6.9 Ma. Mineralization of the deposit is divided into barren massive quartz (stage I), Au–Ag–Te mineralization occurring in quartz‐adularia‐clays banded ore (Stage II), intensive brecciation (Stage III), post‐ore coarse amethyst (Stage IV), carbonate (Stage V), and supergene stages (Stage VI). In the supergene stage various secondary minerals, including rare bilibinskite, bogdanovite, bessmertnovite metallic alloys, secondary gold, and various oxides, formed under intensely oxidized conditions. Despite heavy oxidation of the ores in the deposit, Te and S fugacities are estimated as Stage II tellurides precipitated at the log f Te2 values ?9 and at log fS2 ?13 based on the chemical compositions of hypogene tellurides and sphalerite. Homogenization temperature of fluid inclusions in quartz broadly ranges from 200 to 300°C. Ore texture, fluid inclusions, gangue, and vein mineral assemblages indicate that the Aginskoe deposit is a low‐sulfidation (quartz–adularia–sericite) vein system.  相似文献   

3.
The Huai Kham On gold deposit is located in the central part of the Sukhothai Fold Belt, northern Thailand. The Sukhothai Fold Belt represents an accretionary complex formed by subduction and collision between the Indochina and Sibumasu Terranes. There are many small gold deposits in the Sukhothai Fold Belt; however, the styles and formation environments of those gold deposits are not clear. The geology of the Huai Kham On deposit consists of volcanic and volcanosedimentary rocks, limestone, and low‐grade metamorphic rocks of Carboniferous to Triassic age. Gold‐bearing quartz veins are hosted by volcanic and volcanosedimentary rocks. The quartz veins can be divided into four stages. The mineral assemblage of the gold‐bearing quartz veins of Stages I and II comprises quartz, calcite, illite, pyrite, native gold, galena, chalcopyrite, and sphalerite. Quartz veins of Stage III consist of microcrystalline quartz, dolomite, calcite, pyrite, native gold, and chalcopyrite. Veins of Stage IV consist of calcite, dolomite, chlorite, and quartz. Fluid inclusions in quartz veins are classified into liquid‐rich two‐phase (Types IA and IB), carbonic‐aqueous (Type II), and carbonic (Type III) fluid inclusions. The homogenization temperatures of Types IA and II fluid inclusions that are related to the gold‐bearing quartz veins from Stages I to III ranged from 240° to 280°C. The δ18O values of quartz veins of Stages I to III range from +12.9 to +13.4‰, suggesting the presence of a homogeneous hydrothermal solution without temperature variation such as a decrease of temperature during the formation of gold‐bearing quartz veins from Stages I to III in the Huai Kham On gold deposit. Based on the calculated formation temperature of 280°C, the δ18O values of the hydrothermal solution that formed the gold‐bearing quartz veins range from +3.2 to +3.7‰, which falls into the range of metamorphic waters. The gold‐bearing quartz veins of the Huai Kham On deposit are interpreted to be the products of metamorphic water.  相似文献   

4.
The Mupane gold deposit, which is one of the numerous gold occurrences in the Tati Greenstone Belt in the northeastern part of Botswana, consists of four orebodies, namely Tau, Tawana, Kwena, and Tholo deposits. The present research, which focuses on the genesis of the Tau deposit, was based on ore petrography, mineral chemistry of sulfides, and sulfur isotope data. Mineralogical characteristics of the host rocks indicate that banded iron formation at the Tau deposit includes iron oxides (magnetite), carbonates (siderite and ankerite), silicates (chlorite and amphibole), and sulfides (arsenopyrite and pyrrhotite). The deposit features arsenopyrite-rich zones associated with biotite-chlorite veins, which are indicative of the precipitation of arsenopyrite concomitant with potassic alteration. The replacement of magnetite by pyrrhotite in some samples suggests that sulfidation was likely the dominant gold precipitation mechanism because it is considered to have destabilized gold-thiocomplexes in the ore-forming fluids. Based on textural relationships and chemical composition, arsenopyrite is interpreted to reflect two generations. Arsenopyrite 1 is possibly early in origin, sieve textured with abundant inclusions of pyrrhotite. Arsenopyrite 1 was then overgrown by late arsenopyrite 2 with no porous textures and rare inclusions of pyrrhotite. Gold mineralization was initiated by focused fluid flow and sulfidation of the oxide facies banded iron formation, leading to an epigenetic gold mineralization. The mineralogical assemblages, textures, and mineral chemistry data at the Tau gold deposit revealed two-stage gold mineralizations commencing with the deposition of invisible gold in arsenopyrite 1 followed by the later formation of native gold during hydrothermal alteration and post-depositional recrystallization of arsenopyrite 1. Laser ablation inductively coupled plasma mass spectrometric analysis of arsenopyrite from the Tau deposit revealed that the hydrothermal event responsible for the formation of late native gold also affected the distribution of other trace elements within the grains as evidenced by varying trace elements contents in arsenopyrite 1 and arsenopyrite 2. The range of δ34S of gold-bearing assemblages from the Tau deposit is restricted from +1.6 to +3.9‰, which is typical of Archean orogenic gold deposits and indicates that overall reduced hydrothermal conditions prevailed during the gold mineralization process at the Tau deposit. The results from this study suggest that gold mineralization involved multi-processes such as sulfidation, metamorphism, deformation, hydrothermal alteration, and gold remobilization.  相似文献   

5.
江西金山剪切带型金矿床中含金石英脉的成矿特征   总被引:14,自引:6,他引:14  
季峻峰  孙承辕 《地质论评》1994,40(4):361-367
本文通过对江西金山剪切带型金矿床中含金石英脉的地质和流体包裹体类型、成分和稳定同位素组成等特征的研究。认为金山剪切带型金矿床含金石英脉是由早期产生的不含金石英脉在遭受碎裂和靡棱岩化时被晚期自然金矿化叠加而形成,自然金矿化的叠加是通过地下热水作用而实现的,而引起自然金沉淀的因素主要是流体的相分离。  相似文献   

6.
Gold mineralization in Southern Granulite Terrain (SGT) of India has close spatial relationship with the shear zones (Moyar–Bhavani) present in Cauvery Suture Zone. Gold is found to be associated with primary quartz veins, placers and laterites. The gold prospects in SGT can be broadly grouped into three provinces i) Wynad-Nilgiri, ii) Malappuram and iii) Attappadi. The auriferous quartz veins are within the deformed biotite/hornblende bearing gneisses and amphibolite. Wall rock alteration is conspicuous around the mineralized veins and gives an assemblage of muscovite–calcite–ankerite–chlorite–biotite–pyrite related to fluid–rock interaction at the time of vein formation. Fluid inclusion studies of vein quartz gives an idea of the nature of the ore forming fluids, the fluid involved in gold mineralization is of low saline and aqueous-carbonic in composition and quite similar to the orogenic lode gold deposits reported world-wide. Micro-thermometric data indicates fluid immiscibility (phase separation) during trapping of fluid inclusions and this must have played an important role in gold deposition. Geochronological studies of mineral separates from Wynad-Nilgiri province using Rb–Sr and Sm–Nd isochron methods of the auriferous quartz veins gave an age of approximately 450 Ma for the vein formation. The present studies on SGT gold mineralization indicate 1. During the Pan-African orogeny, extensive fluid influx from mantle and metamorphism extracted gold from a mafic source and were focused along major structural discontinuities of Moyar–Bhavani Shear Zone, 2. The aqueous–carbonic ore fluid interacted with rocks of the upper crust and triggered a set of metasomatic changes responsible for the dissolved components such as Ca, Si and Fe and finally precipitating in the veins and 3. The mineralizing fluid with dissolved gold in sulphide complex got destabilized due to fluid immiscibility and wall rock alteration leading to the deposition of gold with associated sulphide minerals in the vein system.  相似文献   

7.
The late Triassic Baolun gold deposit hosted by Silurian phyllites is a large‐scale high‐grade gold deposit in Hainan Island, South China. The ores can be classified into quartz‐vein dominated type and less altered rock type. Three mineralization stages were recognized by mineral assemblages. The early stage, as the most important mineralization stage, is characterized by a quartz–native gold assemblage. The muscovite?quartz?pyrite?native gold assemblage is related to the intermedium mineralization stage. In late mineralization stage, native gold and Bi‐bearing minerals are paragenetic minerals. Microthermometry analyses show that the early mineralization stage is characterized by two types of fluid inclusions, including CO2‐rich inclusions (C‐type) and aqueous inclusions (W‐type). C‐type inclusions homogenize at 276–335°C with an averaged value of 306°C and have salinities of 1.0–10.0 wt% NaCl equivalent (mean value of 4.9 wt% NaCl equivalent). W‐type inclusions homogenize at 252–301°C (mean value of 278°C) with salinity of 4.0–9.7 wt% NaCl equivalent (mean value of 7.4 wt% NaCl equivalent). In intermedium mineralization stage, C‐type and W‐type inclusions homogenize at 228–320°C (mean value of 283°C) and 178–296°C (mean value of 241°C), with salinities of 2.4–9.9 wt% NaCl equivalent (mean value of 6.5 wt% NaCl equivalent) and 3.7–11.7 wt% NaCl equivalent (mean value of 7.7 wt% NaCl equivalent), respectively. No suitable mineral, such as quartz or calcite, was found for fluid inclusion study from late mineralization stage. In contrast, only aqueous inclusions were found from post‐ore barren veins, which yielded lower homogenization temperatures ranging from 168–241°C (mean value of 195°C) and similar salinities (2.6–12.6 wt% NaCl equivalent with averaged value of 7.2 wt% NaCl equivalent). The different homogenization temperatures and similar salinities of C‐type and W‐type from each mineralization stage indicate that fluid immiscibility and boiling occurred. The Baolun gold deposit was precipitated from a CO2‐bearing mesothermal fluid, and formed at a syn‐collision environment following the closure of the Paleo‐Tethys.  相似文献   

8.
The Tirek gold deposit hosted in the Archean shield is one of the richest sources of mined gold for Algeria. The deposit is controlled by the East Ouzzal shear zone (EOSZ), a transcurrent N–S lithospheric fault. The EOSZ is a late Pan-African dextral-ductile shear zone separating two contrasting Precambrian domains: the Archean In Ouzzal block to the west (Orthogenesis with subordinate metasediments reworked and granulitized during the ca. 2 Ga Eburnean event) and a middle Proterozoic block to the east involved in the ca. 600 Ma Pan-African event. The auriferous quartz veins are mainly oriented in two directions, N–S veins hosted in mylonitic rocks and NE–SW veins hosted in gabbroic or gneissic bands. The NE–SW veins contain the richest ore. Gold ore is found in a system of veins and lenticular quartz veinlets arranged in anastomosing networks. The hydrothermal alteration associated with these veins is characteristically a carbonate-sericite-albite-pyrite assemblage. Gold is the main metal of economic importance; it is disseminated in the quartz as grains or fibers along microcracks and as microscopic grains in the host rocks. Microthermometric results and Raman laser data from fluid inclusions demonstrate that the ore-forming fluids contained H2O-CO2±CH4 and were low salinity. Homogenization temperatures are commonly 250–310 °C. In the Tirek deposit, the role of the shear zone that hosts the mineralization was to drain the hydrothermal fluid. Interactions between the fluid and the mafic host rocks and CO2 also contributed to the formation of the hydrothermal gold deposit at Tirek.  相似文献   

9.
The Woxi Au–Sb–W deposit in the western Hunan Province, China, is of hydrothermal vein type characterized by a rare mineral assemblage of stibnite, scheelite and native gold, of which gold fineness ranges from 998.6 to 1000. The mineralization sequence observed in the deposit is, from early to late, coarse‐grained pyrite – scheelite – stibnite – Pb–Sb–S minerals – sphalerite (+ cubanite) – fine‐grained pyrite. Native gold may have precipitated with scheelte. Microthermometric and LA–ICP–MS analyses of fluid inclusions in scheelite, quartz associated with scheelite and stibnite and barren quartz clarified that there may be at least three types of hydrothermal fluids during the vein formation in the Woxi deposit. Scheelite and native gold precipitated from the fluid of high temperature and salinity with high concentrations of metal elements, followed by stibnite precipitation. The later fluid of the highest temperature and salinity with low concentrations of the elements yielded the sphalerite mineralization. The latest fluid of low temperature and salinity with low concentrations of the elements is observed mainly in barren quartz. The remarkably high Au/Ag concentration ratios determined in the fluid inclusions in scheelite might be the reason for the extremely high gold fineness of native gold.  相似文献   

10.
Abstract. Denggezhuang gold deposit is an epithermal gold‐quartz vein deposit in northern Muru gold belt, eastern Shandong, China. The deposit occurs in the NNE‐striking faults within the Mesozoic granite. The deposit consists of four major veins with a general NNE‐strike. Based on crosscutting relationships and mineral parageneses, the veins appear to have been formed during the same mineralization epochs, and are further divided into three stages: (1) massive barren quartz veins; (2) quartz‐sulfides veins; (3) late, pure quartz or calcite veinlets. Most gold mineralization is associated with the second stage. The early stage is characterized by quartz, and small amounts of ore minerals (pyrite), the second stage is characterized by large amounts of ore minerals. Fluid inclusions in vein quartz contain C‐H‐O fluids of variable compositions. Three main types of fluid inclusions are recognized at room temperature: type I, two‐phase, aqueous vapor and an aqueous liquid phase (L+V); type II, aqueous‐carbonic inclusions, a CC2‐liquid with/without vapor and aqueous liquid (LCO2+VCC2+Laq.); type III, mono‐phase aqueous liquid (Laq.). Data from fluid inclusion distribution, microthermometry, and gas analysis indicate that fluids associated with Au mineralized quartz veins (stage 2) have moderate salinity ranging from 1.91 to 16.43 wt% NaCl equivalent (modeled salinity around 8–10 wt% NaCl equiv.). These veins formatted at temperatures from 80d? to 280d?C. Fluids associated with barren quartz veins (stage 3) have a low salinity of about 1.91 to 2.57 wt% NaCl equivalent and lower temperature. There is evidence of fluid immiscibility and boiling in ore‐forming stages. Stable isotope analyses of quartz indicate that the veins were deposited by waters with δO and δD values ranging from those of magmatic water to typical meteoric water. The gold metallogenesis of Muru gold belt has no relationship with the granite, and formed during the late stage of the crust thinning of North China.  相似文献   

11.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   

12.
Abstract: The Wenyu mesothermal gold deposit is located in the Xiaoqinling district about 1000 km southwest of Beijing in central China. It occurs in the Late Archean to Early Proterozoic metamorphosed volcanic and sedimentary rocks. Three distinct stages of veins have been identified: (I) gold‐poor quartz–pyrite veins, (II) gold‐rich sulfide–quartz veins, and (III) gold‐poor carbonate–quartz veins. Stage II can be subdivided into IIa and IIb. Gold typically occurs as fracture‐fillings associated with chalcopyrite and galena. Fluid inclusions were examined in quartz samples from veins of both stage I and II. Three types of fluid inclusions are identified: CO2–H2O, CO2–rich, and aqueous inclusions. The first two types are of primary in origin. The last type occurs in two ways: coexisting with CO2–H2O and CO2–rich inclusions and thus primary in origin; and occurring along late healed fractures and hence secondary in origin. CO2–H2O inclusions display progressively decreasing Th and increasing Thco2, from the highest Th (311–408C) and lowest Thco2 (average 18C) in stage I quartz through middle Th (284–358C) and ThCO2(average 25C) in stage IIa quartz to the lowest Th (275–314C) and highest ThCO2 (average 28C) in stage IIb quartz, indicating an evolving H2O–CO2–NaCl fluid system. CO2–rich and primary aqueous inclusions show consistent ThCO2 or Th with their coexistent CO2–H2O inclusions. Whereas the secondary aqueous inclusions in stage I and IIa quartz have almost the same Th and salinity as the primary aqueous inclusions in stage IIb quartz. Comparing with CO2–H2O inclusions, these non–CO2, low salinity aqueous inclusions may come from different origin, most probably meteoric water. Unlike in both stage I and IIa quartz, fluid inclusions in stage IIb do not show evidence of fluid immiscibility. The fact that most of gold is associated with stage IIa and IIb veins and not with veins of stage I which is the main stage of vein formation suggests that gold deposition occurs at the later stage of fluid immiscibility. The continuing phase separation led to the deposition of large amounts of gold at the Wenyu mine.  相似文献   

13.
The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite - sericite - quartz zone and an outer seicite - chlorite - calcite - epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from –1.67 to +0.49‰ with average of –0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66–17.75, 15.50–15.60, and 37.64–38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.  相似文献   

14.
The Huilvshan gold deposit in the west Junggar (Xinjiang, China) is hosted in chloritized basalts, chlorite–siderite-altered basalts, and quartz–siderite rocks. Our study demonstrated that all these rocks were derived by alteration of basalts in a shear zone. The orebodies, consisting of quartz-sulfide veins and disseminated sulfides, formed in five stages: quartz–muscovite (I), disseminated sulfides (II), quartz–ankerite-sulfide (III), quartz–calcite-sulfide (IV), and quartz–calcite (V). Auriferous minerals are native gold in stage III and electrum in stage IV. During alteration of basalts in the shear zone, ore-forming elements were released from basalts to ore-forming fluid. Compared with fresh basalts, sulfide-bearing chloritized basalts contain much higher Sr, Ba, P, La, Ce, U, Mn, Ni, Zn, As, Ag, and Au contents. Phase analysis of the As–Cu–Fe–S–O system with the SUPCRT92 software package indicates that a decrease of the aH2S value, caused by the fluid–rock reactions and crystallization of sulfides, induced gold precipitation.  相似文献   

15.
The Konevinsky gold deposit in southeast Eastern Sayan is distinguished from most known deposits in this region (Zun-Kholba, etc.) by the geological setting and composition of mineralization. To elucidate the cause of the peculiar mineralization, we have studied the composition, formation conditions, and origin of this deposit, which is related to the Ordovician granitoid pluton 445–441 Ma in age cut by intermediate and basic dikes spatially associated with metavolcanic rocks of the Devonian–Carboniferous Ilei Sequence. Four mineral assemblages are recognized: (1) quartz–pyrite–molybdenite, (2) quartz–gold–pyrite, (3) gold–polysulfide, and (4) telluride. Certain indications show that the ore was formed as a result of the superposition of two distinct mineral assemblages differing in age. The first stage dated at ~440 Ma is related to intrusions generating Cu–Mo–Au porphyry mineralization and gold–polysulfide veins. The second stage is controlled by dikes pertaining to the Devonian–Carboniferous volcanic–plutonic association. The second stage is characterized by gain of Hg and Te and formation of gold–mercury–telluride paragenesis.  相似文献   

16.
Mineral assemblages and chemical compositions of ore minerals from the Boroo gold deposit in the North Khentei gold belt of Mongolia were studied to characterize the gold mineralization, and to clarify crystallization processes of the ore minerals. The gold deposit consists of low‐grade disseminated and stockwork ores in granite, metasedimentary rocks and diorite dikes. Moderate to high‐grade auriferous quartz vein ores are present in the above lithological units. The ore grades of the former range from about 1 to 3 g/t, and those of the latter from 5 to 10 g/t, or more than 10 g/t Au. The main sulfide minerals in the ores are pyrite and arsenopyrite, both of which are divisible into two different stages (pyrite‐I and pyrite‐II; arsenopyrite‐I and arsenopyrite‐II). Sphalerite, galena, chalcopyrite, and tetrahedrite are minor associated minerals, with trace amounts of bournonite, boulangerite, geerite, alloclasite, native gold, and electrum. The ore minerals in the both types of ores are variable in distribution, abundance and grain size. Four modes of gold occurrence are recognized: (i) “invisible” gold in pyrite and arsenopyrite in the disseminated and stockwork ores, and in auriferous quartz vein ores; (ii) microscopic native gold, 3 to 100 µm in diameter, that occurs as fine grains or as an interstitial phase in sulfides in the disseminated and stockwork ores, and in auriferous quartz vein ores; (iii) visible native gold, up to 1 cm in diameter, in the auriferous quartz vein ores; and (iv) electrum in the auriferous quartz vein ores. The gold mineralization of the disseminated and stockwork ores consists of four stages characterized by the mineral assemblages of: (i) pyrite‐I + arsenopyrite‐I; (ii) pyrite‐II + arsenopyrite‐II; (iii) sphalerite + galena + chalcopyrite + tetrahedrite + bournonite + boulangerite + alloclasite + native gold; and (iv) native gold. In the auriferous quartz vein ores, five mineralization stages are defined by the following mineral assemblages: (i) pyrite‐I; (ii) pyrite‐II + arsenopyrite; (iii) sphalerite + galena + chalcopyrite; (iv) Ag‐rich tetrahedrite‐tennantite + bournonite + geerite + native gold; and (v) electrum. The As–Au relations in pyrite‐II and arsenopyrite suggest that gold detected as invisible gold is mostly attributed to Au+1 in those minerals. By applying the arsenopyrite geothermometer to arsenopyrite‐II in the disseminated and stockwork ores, crystallization temperature and logfs2 are estimated to be 365 to 300 °C and –7.5 to –10.1, respectively.  相似文献   

17.
The Baogutu gold deposit, West Junggar (Xinjiang, NW China), is composed of quartz–sulfide veins and their stockworks and is hosted within an Early Carboniferous volcanic–sedimentary sequence. Three ore-forming paragenetic stages can be identified: coarse-grained quartz–sulfide vein (stage I), gold-bearing fine-grained quartz–sulfide vein (stage II), and native antimony-bearing calcite–sulfide veinlets (stage III). The estimated formation temperatures (approximately 360 to 220 °C), fS2 (? 7 to ? 15 log units), and fO2 (? 26 to ? 43 log units) decrease from stage I, through stage II, to stage III. The nature of the hydrothermal fluid changed from weakly acidic (pH: 5 to 6 at stage I) to alkaline (pH: > 7 at stage III).Two different occurrences of native antimony could be identified: one coexists with chalcopyrite and pyrrhotite, whereas the other occurs as isolate grains within calcite veins. Native antimony (up to 100 μm in size) contains minor amounts of As (2.0 to 2.7 wt.%); empirical formula Sb0.95–0.96As0.03–0.04. Decrease of temperature and fO2 at high pH and low fS2 conditions favored co-precipitation of native antimony–ullmannite assemblages and the decomposition of tetrahedrite. Native antimony crystallized later than the native gold, suggesting fractionation between Au and Sb during the hydrothermal evolution of the deposit.  相似文献   

18.
The Sibutad gold deposit has gold associated in quartz veins. The most important of these is the Lalab orebody, which contains ore‐grade gold, predominantly, in milky quartz veins and veinlets. Here, alteration quartz and fine‐grained crystalline clear and milky quartz were formed from hydrothermal fluids in three stages, namely stages I, II and III. Fluid inclusion microthermometry was carried out on stage I milky quartz, stage II fine‐grained alteration quartz and stage III milky quartz ± barite veins and veinlets. Homogenization temperatures (TH) are >248°C in stage I, 214–232°C in stage II and 186–239°C in stage III. These fluid inclusions have salinity between 1 and 2 wt% NaCl equivalent. In terms of gold assay, stage I drill‐core samples have gold grades 0.53–0.76 g/ton Au, stage II samples have 1.12–3.70 g/ton Au and stage III samples have 9.06–23.88 g/ton Au. This correlation suggests that gold was precipitated from the stage II and III fluids.  相似文献   

19.
Several high‐sulfidation epithermal gold orebodies in the Mankayan Mineral District were formed in an environment that has been already affected by earlier porphyry‐type mineralization. This study reports the geologic and geochemical characteristics of the Carmen and Florence epithermal orebodies, which are located in the south of the Lepanto main enargite–gold orebody. The gold‐bearing epithermal quartz veins in the Carmen and Florence areas are of two types: (i) the enargite‐rich veins and (ii) the quartz–pyrite–gold (QPG) veins. The two types of veins are mainly hosted by the Cretaceous Lepanto Metavolcanics basement rocks, with minor veins cutting the Pleistocene Imbanguila Dacite Pyroclastics. The mineral assemblages and homogenization temperatures of fluid inclusions indicate that the Carmen and Florence orebodies were deposited by fluids varying from high to very high sulfidation state. The enargite and QPG epithermal veins of Carmen and Florence cut porphyry‐type quartz veinlet stockworks and veins that host polyphase hypersaline fluid inclusions that did not homogenize at or below 400°C. These high‐temperature quartz exhibits distinctly different mineral chemistry from the quartz of the QPG and enargite‐rich epithermal veins. In particular, the Ti content of quartz of the porphyry‐type veinlet stockwork is elevated (>100 ppm), whereas the Ti concentration of the epithermal vein quartz crystals are below detection limits. The Fe concentration of quartz is high in epithermal vein quartz (>300 ppm), whereas nearly undetected in the porphyry‐type stockwork veinlet quartz. Multiple generations of quartz with different mineral chemistry, fluid inclusions morphology, temperature, salinity and bulk gas compositions, and stable isotopic ratios indicate the variable hydrothermal conditions throughout the mineralization history of the Mankayan District. The temperature, pH, sulfidation state, oxidation state, and fluid composition vary among the orebodies in Carmen and Florence areas. Furthermore, the characteristics of earlier alteration affected the apparent characteristics of subsequent mineralization.  相似文献   

20.
赛盛勋  邱昆峰 《岩石学报》2020,36(5):1547-1566
位于胶东东部苏鲁地体内的乳山金矿曾是我国单脉金储量最大的矿床,其主矿脉为一具有复杂内部结构的富金石英脉,形成于包含周期性流体活动的增量增长过程。该矿床成矿流体演化、精细成矿过程和金沉淀机制仍缺乏有效制约。本研究在详细结构构造观察基础上,在代表单次成矿流体活动的同一石英层内识别出分别代表三个连续成矿阶段的三类黄铁矿,开展激光剥蚀-电感耦合等离子质谱原位微量元素测试。结果显示不同阶段黄铁矿微量元素成分基本一致,Co、Ni、As等元素因成矿流体间歇性压力波动而周期性地以不同含量进入黄铁矿,形成这些元素的韵律成分环带。Au等其他微量元素在不同阶段黄铁矿内均匀分布,其分布行为受压力波动影响较小。间歇性压力波动和由此引发的周期性流体不混溶使乳白色粗粒石英和黄铁矿、烟灰色中细粒他形石英和黄铁矿依次大规模沉淀,金银碲化物、银金矿、自然金和方铅矿、闪锌矿、黄铜矿等硫化物随后在愈加富Au、Ag、Te、Pb、Zn和Cu等的流体中近于同时沉淀。在此过程中成矿流体虽整体表现为还原性,但其还原性随着压力波动而不断递减氧化性持续增加;流体碲逸度早期保持稳定,后期则大幅上升。金以可见金形式充填先成黄铁矿裂隙或沿黄铁矿边缘分布,周期性流体压力波动引发的间歇性流体不混溶导致H_2S、CO_2和CH_4等气体大规模逸出,金硫络合物失稳分解,金被吸附至黄铁矿内水力致裂形成的裂隙面发生沉淀。排除了先成黄铁矿内不可见金再活化为可见金的可能性,认为周期性流体压力波动引起的流体不混溶是引发乳山金矿床可见金高效沉淀的关键机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号