首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Barda group of hills represents a centre of laccolithic intrusion. The rocks encountered here are pierite basalt, rhyolite, obsidian, granophyre, felsite, aplite and diorite. There is evidence for both « Fissure Type » and « Central Volcanic Type » of igneous activity in the region, which seem to have occurred in three different phases. The parent magma has been shown to be tholeiitic in composition. The acid rocks may have been formed by crystal fractionation along with diffusion of alkalis and volatiles. The origin of diorite is attributed to a process of hybridization.  相似文献   

2.
Ascertaining the emplacement mechanism of oceanic basaltic lavas is important in understanding how ocean floor topography is produced and oceanic plates evolve, particularly during the early stages of crustal development of a supra-subduction zone. A detailed study of the volcanic stratigraphy at International Ocean Discovery Program (IODP) Site U1438 in the Amami Sankaku Basin, west of the Kyushu–Palau Ridge, has revealed the development of lava accretion and ridge topography on the Philippine Sea plate at about 49 Ma. Igneous basement rocks penetrated at Site U1438 are the uppermost 150 m of ~6 km-thick oceanic crust, and comprise, in a downhole direction, sheet flows (12.6 m), lobate sheet flows (61.3 m), pillow lavas (50.7 m), and thin sheet flows (25.3 m). The lowermost sheet flows are intercalated with layers of limestone and epiclastic tuff. Lithofacies analysis reveals that the lowermost sheet flows, limestone, and tuff formed on an axial rise, the pillow lavas were emplaced on a ridge slope, and the lobate sheet flows formed off ridge on an abyssal plain. The lithofacies of the basement basalt corresponds to the upper portions of fast-spreading oceanic crust, suggesting that subduction initiation was associated with intermediate to fast rates of seafloor spreading. The surface sheet flows are olivine–clinopyroxene-phyric basalt and differ from the lower basalt flows that contain phenocrysts of olivine and plagioclase, with or without clinopyroxene. The depleted chrome-spinel composition and olivine–clinopyroxene phenocryst assemblage in the surface sheet flows suggests a slight contribution of water for magma generation not present for the lower basalt flows. Considering the lithological difference between the backarc and forearc oceanic crust in the Izu–Bonin–Mariana arc, with sheet flow dominant in the former, seafloor spreading occurred faster in the later stage of subduction initiation.  相似文献   

3.
Quaternary basalt magmas in the Circum-Pacific belt and island arcs and also in Indonesia change continuously from less alkalic and more siliceous type (tholeiite) on the oceanic side to more alkalic and less siliceous type (alkali olivine basalt) on the continental side. In the northeastern part of the Japanese Islands and in Kamchatka, zones of tholeiite, high-alumina basalt, and alkali olivine basalt are arranged parallel to the Pacific coast in the order just named, whereas in the southwestern part of the Japanese Islands, the Aleutian Islands, northwestern United States, New Zealand, and Indonesia, zones of high-alumina basalt and alkali olivine basalt are arranged parallel to the coast. In the Izu-Mariana, Kurile, South Sandwich and Tonga Islands, where deep oceans are present on both sides of the island arcs, only a zone of tholeiite is represented. Thus the lateral variation of magma type is characteristic of the transitional zone between the oceanic and continental structures. Because the variation is continuous, the physico-chemical process attending basalt magma production should also change continuously from the oceanic to continental mantle. Suggested explanations for the lateral variation assuming a homogeneous mantle are: 1) Close correspondence between the variations of depth of earthquake foci in the mantle and of basalt magma type in the Japanese Islands indicates that different magmas are produced at different depths where the earthquakes are generated by stress release: tholeiite at depths around 100 km, high-alumina basalt at depths around 200 km, and alkali olivine basalt at depths greater than 250 km. 2) Primary olivine tholeiite magma is produced at a uniform level of the mantle (100–150 km), and on the oceanic side of the continental margin, it leaves the source region immediately after its production and forms magma reservoirs at shallow depths, perhaps in the crust, where it undergoes fractionation to produce SiO2-oversaturated tholeiite magma, whereas on the continental side, the primary magma forms reservoirs near the source region and stays there long enough to be fractionated to produce alkali olivine basalt magma, and in the intermediate zone, the primary magma forms reservoirs at intermediate depths where it is fractionated to produce high-alumina basalt magma.  相似文献   

4.
Crustal structures around the Yamato Basin in the southeastern Sea of Japan, inferred from recent ocean bottom seismography (OBS) and active-source seismological studies, are reviewed to elucidate various stages of crustal modification involved from rifting in the crust of the surrounding continental arc to the production of oceanic crust in the Yamato Basin of the back-arc basin. The northern, central, and southern areas of the Yamato Basin have crustal thicknesses of approximately 12–16 km, and lowermost crusts with P-wave velocities greater than 7.2 km/s. Very few units have P-wave velocities in the range 5.4–6.0 km/s, which corresponds to the continental upper crust. These findings, combined with previous geochemical analysis of basalt samples, are interpreted to indicate that a thick oceanic crust has been formed in these areas of the basin, and that this oceanic crust has been underplated by mantle-derived magma. In the central Yamato Basin, the original continental crust has been fully breached and oceanic crust has been formed. Conversely, the presence of a unit corresponding to the continental upper crust and the absence of a high-velocity part in the lower crust implies that the southwestern edge of the Yamato Basin has a rifted crust without significant intrusion. The Oki Trough has a crust that is 17–19 km thick with a high-velocity lower crust and a unit corresponding to the continental upper crust. The formation of the Oki Trough resulted from rifting with magmatic intrusion and/or underplating. We interpret these variations in the crustal characteristics of the Yamato Basin area as reflecting various instances of crustal modification by thinning and magmatic intrusion due to back-arc extension, resulting in the production of a thick oceanic crust in the basin.  相似文献   

5.
The uranium content of glass from chilled margins of oceanic tholeiitic basalt flows is generally ≤0.1ppm, even for old samples with highly altered crystalline interiors. Such low values represent the original whole rock concentrations, although subsequent to eruption low-temperature weathering has added uranium, and other elements, to the crystalline portions of these basalts. Consideration of the K/U ratios of altered samples suggests that basalt weathering may provide the major oceanic sink for these two elements.  相似文献   

6.
Abstract The Jurassic Tamba accretionary complex is divided into two tectono‐stratigraphic suites (Type I and II nappe groups), which are further divided into six complexes (nappes) each of which is characterized by a rock sequence of Late Paleozoic greenstone/limestone, Permian to Jurassic chert and Jurassic terrigenous clastic rocks. The mode of occurrence of the greenstone is divided into two types. The major basal type occurs as a large coherent slab associated with Permian chert and limestone, constituting the basal part of each complex, and the minor mixed type occurs as fragmented allochthonous greenstone blocks and lenses mixed with chert, limestone and sandstone in the Jurassic mudstone matrix. Most of the basal greenstones have uniform geochemical characteristics, which indicate enriched‐mid‐oceanic ridge basalt (MORB) affinity. Their geochemical compositions are akin to the reported Permo‐Carboniferous and Triassic oceanic plateau basalts. Mixed greenstones are divided into two petrochemical types: (i) tholeiitic basalt with normal‐MORB affinity, which is predominant in the uppermost complex of the Type II suite (upper nappe group); and (ii) tholeiitic and alkalic basalts of oceanic island or seamount origin, which are common in all complexes of the Tamba Belt. Geochemical characteristics of the greenstones thus vary in accordance with their occurrences and the structural units to which they belong. This relationship reflects the difference in topographic relief and crustal thickness of the accreted oceanic edifices – the remnants of thick oceanic plateau crust tended to accrete to the continental margin as a large basal greenstone body, whereas thin normal oceanic crust with small seamounts or oceanic islands accreted as mixed greenstones because of their mechanical weakness. The Type II suite (upper nappe group) contains the basal and mixed greenstones, whereas the Type I suite (lower nappe group) includes only mixed greenstones. This distinction may reflect the temporal change of subducting edifices from a thick oceanic plateau to a thin normal oceanic crust, and suggests that the accretion of a large oceanic plateau may be responsible for building accretionary complexes with thick basal greenstones slabs.  相似文献   

7.
Silicic peralkaline volcanic rocks of the afar depression (Ethiopia)   总被引:1,自引:0,他引:1  
Three main types of recent volcanism may be distinguished in the Afar Depression: 1) oceanic volcanism of the axial ranges; 2) volcanism along the margins where an attenuated sialic crust probably occurs; 3) mainly fissural volcanism of Central-Southern Afar, with associated central volcanoes, similar as a whole to the volcanism of the Ethiopian Rift Valley. Peralkaline silicic volcanic rocks are found in all the three groups but showing some different characteristics which seem related to their geological location and which probably reflect different sources. Moreover emplacement of peralkaline granitic bodies, associated with volcanics of the same composition, marks the first stage of formation of the Afar Depression, in the Early Miocene. Axial Ranges: Erta’Ale and Boina volcanic ranges indicate that peralkaline rocks are the final liquids produced by fractionation of basalt in shallow magma chambers of central volcanoes. The parental magma is a transitional type of basalt with a mildly alkalic affinity, which fractionated under lowpH2O-pO2 conditions. Transition to peralkaline liquids is realized without passing a «true» trachytic (low silica) stage. The first peralkaline liquid is a low silica comendite and evidence exists that «plagioclase effect» was active in determining the first peralkalinity. Within the peralkaline field a fractionation mainly controlled by alkali feldspar progressively increases the peralkalinity and silica oversaturation of residual liquids (transition from comendites to pantellerites). The most peralkaline pantellerites of Boina are produced by fractionation of an alkali feldspar of constant composition (Ab65–68 Or35–32) suggesting that these liquids lie on a «low temperature zone» of the peralkaline oversaturated system. Marginal Units: On the borders of the depression peralkaline silicics are found in volcanic massifs mainly made of metaluminous silicic products. Petrology and geochemistry suggest a complex origin. Crystal fractionation, contamination with sialic crust and chemical changes related to a volatile rich phase, all these processes probably played a role in the genesis of these peralkaline silicic rocks. Central-Southern Afar Fissural Volcanism: Mildly alkaline basalts are associated with peralkaline and metaluminous silicics; intermediate rocks are very scanty. Fractionation from deep seated magmatic bodies with selective eruptivity and partial melting at depth of associated basalts or of a common source material are possible genetic mechanisms.  相似文献   

8.
Some recent calc-alkaline andesites and dacites from southern and central Martinique contain basic xenoliths belonging to two main petrographic types:
  • The most frequent one has a hyalodoleritic texture (« H type ») with hornblende + plagioclase + Fe-Ti oxides, set in an abundant glassy and vacuolar groundmass.
  • The other one exhibits a typical porphyritic basaltic texture (« B type ») and mineralogy (olivine + plagioclase + orthopyroxene + clinopyroxene + Fe-Ti oxides and scarce, or absent hornblende).
  • Gradual textural and mineralogical transitions occur between these two types (« I type ») with the progressive development of hornblende at the expense of olivine and pyroxenes. Mineralogical and chemical studies show no primary compositional correlations between the basaltic xenoliths and their host lavas, thus demonstrating that the former are not cognate inclusions; they are remnants of basaltic liquids intruded into andesitic to dacitic magma chambers. This interpretation is strengthened by the typical calc-alkaline basaltic composition of the xenoliths, whatever their petrographic type (« H », « I » or « B »). The intrusion of partly liquid, hot basaltic magma into colder water-saturated andesitic to dacitic bodies leads to drastic changes in physical conditions. The two components; the basaltic xenoliths are quenched and homogeneized with their host lavas with respect to To;fO2 andpH2O conditions. « H type » xenoliths represent original mostly liquid basalts in which such physical changes lead to the formation of hornblende and the development of a vacuolar and hyalodoleritic texture. The temperature increase of the acid magma depends on the amount of the intruding basalt and on the thermal contrast between the two components. The textural diversity which characterizes the xenoliths reflects the cooling rate of the basaltic fragments and/or their position relative to the basaltic bodies (chilled margins or inner, more crystallized, portions). In addition to physical equilibration (T, fO2) between the magmas, mixing involves:
  • mechanical transfer of phenocrysts from one component to another, in both directions;
  • volatile transfer to the basaltic xenoliths, with chemical exchanges.
  • It is here demonstrated that a short period of time (some ten hours to a few days) separates the mixing event from the eruption, outlining the importance of magma mixing in the triggering of eruption. The common occurrence of basaltic xenoliths (generally of « H » type) in calc-alkaline lavas is emphasized, showing that this mechanism is of first importance in calc-alkaline magma petrogenesis.  相似文献   

    9.
    Concurrently erupted, alternating Deccan Trap flows of tholeiitic and potassic alkalic basalt outcrop along both banks of the Narmada River near Navgam. Nearby, around Rajpipla, early tholeiites are overlain by K-rich alkalic flows and intrusives, which are themselves cut by later tholeiitic dikes. Nd and Sr isotopic ratios of a wide variety of rocks from both areas form a single correlated array, which reflects mixing between positive εJUV and negative εJUV endmembers. There is an almost complete overlap between values for tholeiitic and alkalic samples; thus, both alkalic and tholeiitic primary magmas must have been produced that were isotopically much alike. A Rajpipla rhyolite also falls on the array, near the midpoint. For positive values of εJUV(T) the array is indistinguishable from that defined by the lower group of tholeiites at Mahabaleshwar, some 450 km to the south, implying a similar or identical high εJUV mantle source. The negative εJUV component, apparently different from either of the two at Mahabaleshwar, may have been continental crust or enriched mantle. Both alkalic and tholeiitic groups display wide overlapping ranges in incompatible elements other than K, Rb, and Ba—particularly in Sr and Nb. This partial decoupling of incompatible elements, in conjunction with the isotopic similarity between the two classes of rocks, is strongly suggestive of an enrichment event in portions of the mantle source shortly before magmatism.  相似文献   

    10.
    Segregation structures in vapor-differentiated basaltic flows   总被引:1,自引:0,他引:1  
     Vesicle cylinders represent a spectacular kind of segregation structure involving residual liquids formed in situ during the cooling of lava flows. These vertical pipes, commonly found within basalt flows typically 2–10 m thick, are interpreted as the product of a vapor-driven differentiation process. The olivine phenocrysts and the earliest generation of groundmass olivines found in cylinder-bearing basalts appear to have been generally affected by magmatic oxidation, resulting in high-temperature iddingsite (HTI) alteration. This feature is also observed within cylinder-free basalt flows which exhibit other kinds of vesicular segregation structures, such as vesicle-rich pegmatoid segregation sheets and/or segregation vesicles. Detailed textural, petrological, and geochemical characteristics of two types of cylinders, three types of vesicle sheets, and five types of segregation vesicles are described, based on the study of 12 occurrences of HTI-bearing basalt flows from oceanic shield volcanoes or continental basalt plateaus. We propose a general classification of these segregation structures likely to derive from vapor differentiation. Flow thickness is probably the main factor influencing their morphology. Finally, we suggest that the concomitant occurrence of olivine oxidation and vapor-differentiation effects results from the late persistence of water oversaturation after eruption, perhaps due to a high rate of magma ascent. Received: 27 March 1999 / Accepted: 15 February 2000  相似文献   

    11.
    1) Petrochemical studies of volcanic rocks shows that alkaline rocks of continents and oceans are different genetically in spite of their mineralogical and chemical similarity. 2) Oceanic rocks develop according to the following type: tholeiitic basalt — olivine basalt — alkaline rocks. 3) Continental alkaline rocks are derivatives of initially alkaline basalts and are connected by gradual transitions with calc-alkaline rocks of island arcs. 4) The source of all volcanic rocks is the upper mantle. Therefore the existence of two main types of rocks — oceanic and continental — reflects basic heterogeneities in composition and structure of the upper mantle.  相似文献   

    12.
    A survey of Sr isotopic ratios and other compositional features of subduction-related magma suites reveals significant correlations between these averaged parameters and characteristics of the underlying crust (i.e., thickness, composition, and age). These observations lead to the conclusion that crust and(or) mantle rocks in the hanging walls of subduction zones are involved in modification of primary mafic magmas (typically basalt or basaltic andesite). It is proposed that mafic magmas will stagnate within the crust or uppermost mantle where they may differentiate and react with wall rocks. The extent to which such processes manifest themselves will depend upon details of the local crustal structure. In particular, the composition and age of the crust will strongly influence such parameters as Sr, Nd and Pb isotopic compositions. Such data strongly indicate the involvement of crustal rocks in locales underlain by old sialic crust (e.g., central Andes). Depending upon the level of magma stagnation and evolution within the crust, different trends in isotopic composition may result. These isotopic trends may be enhanced by partial melting of the wall rocks to produce relatively silicic anatectic magmas, and locally they may reflect subduction of continental sediments. Interpretation of the isotopic data may be more ambiguous in locales underlain by younger and more mafic continental crust (Cascades, E Eleutians) and those underlain by oceanic crust owing to the similarity in isotopic composition of primary magmas and the latter crustal materials. Yet some degree of crustal involvement in magmatic evolution seems highly probable even in these more primitive terranes. Consequently, most island arc magmas, and especially those more evolved than basalt, are probably not primary in the sense that they do not represent direct melts of the upper mantle. Studies of arc volcanic rocks may yield misleading conclusions concerning processes of magma generation related to subduction unless evolutionary processes are defined and their effects considered. It appears that modern volcanic arcs provide a poor analog for models of early crustal development because the modern mantle-derived magmatic components are more mafic in composition than average continental crust.  相似文献   

    13.
    Based on deep seismic sounding data, a velocity model of the Earth's crust has been developed for the Kamchatkan segment of the Pacific transition zone. The velocity difference in the structure of the continental and oceanic blocks of the Earth's crust is shown. It has been revealed that these crustal blocks join each other along the deeply inclined fault zone. This zone is located 120 km northwest of the axis of the deep-sea trench. It separates the high-velocity block of eastern peninsulas and bays of Kamchatka from the low-velocity block of the Shatsky Ridge. The latter may be considered to be a contact zone between the continental and oceanic crust.The crust of the regions of Recent volcanic activity in Kamchatka has a number of specific features, such as: a complex heterogeneous structure of the basement; relatively high velocity values in the crust and low values in the upper mantle; anomalous behaviour and velocity inversions related to the complex alternation of sedimentary-volcanogenous and intrusive rocks and zones of hydrothermal alterations; and the possible presence of magma chambers of different types within the crust and the crust-mantle transition zone.  相似文献   

    14.
    Nishinoshima, a submarine volcano in the Ogasawara Arc, approximately 1 000 km south of Tokyo, Japan, suddenly erupted in November 2013, after 40 years of dormancy. Olivine‐bearing phenocryst‐poor andesites found in older submarine lavas from the flanks of the volcano have been used to develop a model for the genesis of andesitic lavas from Nishinoshima. In this model, primary andesite magmas originate directly from the mantle as a result of shallow and hydrous melting of plagioclase peridotites. Thus, it only operates beneath Nishinoshima and submarine volcanoes in the Ogasawara Arc and other oceanic arcs, where the crust is thin. The primary magma compositions have changed from basalt, produced at considerable depth, to andesite, produced beneath the existing thinner crust at this location in the arc. This reflects the thermal and mechanical evolution of the mantle wedge and the overlying lithosphere. It is suggested that continental crust‐like andesitic magma builds up beneath submarine volcanoes on thin arc lithosphere today, and has built up beneath such volcanoes in the past. Andesites produced by this shallow and hydrous melting of the mantle could accumulate through collisions of plates to generate continental crust.  相似文献   

    15.
    The eruption centres of late volcanism in Chile are situated in two separate areas in the northern and southern High Cordillera. In the north, the ignimbrites of the Rhyolite Formation and the rocks of the « Andesite » Formation occur in about equal proportions, and recent activity is meagre. In the south, the rocks of the « Andesite » Formation predominate, and many volcanoes are in a highly explosive phase of activity. Field relationships, petrological and geochemical data show that the rocks of both Formations are closely related to each other. There is evidence that the magmas of the Rhyolite Formation were formed by fusion of sialic material in the upper parts of the crust. The data for the volcanics of the « Andesite » Formation are inconsistent with their derivation by fractional crystallization of a basaltic parent or by direct mantle derivation involving a single stage process. The authors suggest that the « andesitic » magmas are products of a primary andesitic magma originated by partial fusion of material of the lower crust. Assuming that the « andesitic » magmas of the central parts of the Andes are derived from the upper mantle, this would mean — in the light of the Sr87/Sr86 data — that the upper mantle in the central region of the Andes is essentially more radiogenic than in other orogenic areas; moroever, it should be very similar in its chemical and Sr87/Sr86 composition to that of the lower crust.  相似文献   

    16.
    Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the total-field magnetic data. Given the challenges associated with the magnetic data at low latitudes and with remanent magnetism in this area, we combine the equivalent-source technique and magnetic amplitude inversion to recover 3D subsurface magnetic structures. The inversion results show that this area is characterized by a north-south block division and east-west zonation. Magnetic regions strike in EW, NE and NW direction and are consistent with major tectonic trends in the region. The highly magnetic zone recovered from inversion in the continental margin differs visibly from that of the magnetically quiet zones to the south. The magnetic anomaly zone strikes in NE direction, covering an area of about 500 km × 60 km, and extending downward to a depth of 25 km or more. In combination with other geophysical data, we suggest that this strongly magnetic zone was produced by deep underplating of magma associated with plate subduction in Mesozoic period. The magnetically quiet zone in the south is an EW trending unit underlain by broad and gentle magnetic layers of lower crust. Its magnetic structure bears a clear resemblance to oceanic crust, assumed to be related to the presence of ancient oceanic crust there.  相似文献   

    17.
    Carbonatite-alkalic rocks occur in the form of dykes and small volcanic plugs in the area, with major central type volcanic activity restricted to Amba Dongar. The trappean flows of Blanford and Bose are identified as plagioclasecalcite rocks. An attempt is made to explain the origin of these rocks which are extensively cut by dykes of alkaline rocks, carbonatites and dolerites. By far the dominant lavas are «fissure phonolites» (Wright, 1963) and tinguaites. The chemical analyses of these rocks show that the magma is mainly of continental sodic alkaline suite, probably turning sodi-potassic, a suggestion drawn from the occurrence of lamprophyres and pseudoleucite tinguaites, and the higher potassium contents of some rocks. Bagh sediments are mainly represented by sandstones which show mild contact effects with carbonatite, especially in the south.  相似文献   

    18.
    The Sawadani greenstone in the Chichibu Paleozoic System is an ancient submarine volcanic complex consisting of pillow lavas and hyaloclastites. The volcanism is divided into two periods. Alkali basalt was erupted in the first period and two shield-shaped cones were formed. After a period of dormancy the volcanism of the second period took place and a cone was formed by eruptions of lavas ranging in composition from mildly alkaline to tholeiitic basalt. The top of the volcano nearly reached the sea surface and was finally about 3.7 km above the base. A limestone cap and volcanic conglomerate were deposited on the summit. The base rests conformably on upper Carboniferous sandstone and subordinate mudstone derived from a continent or mature island arc. Many feeding channels of lava cut the volcanic body and underlying sedimentary formation. Sedimentation proceeded concurrently on the surrounding sea floor, so that volcanic and sedimentary material is interlayered.The Sawadani greenstone, although it occurs in the high-P/T metamorphic belt, is not believed to be a fragment of oceanic crust (ophiolite complex) formed by oceanic ridge volcanism and later carried into a convergent zone. It is a seamount formed on and within a sedimentary sequence near a continent or island arc. The magma changed from alkaline to tholeittic as the volcano grew.It cannot be assumed that all metavolcanic rocks formed in high-pressure metamorphic terranes are fragments of oceanic crust.  相似文献   

    19.
    The influence of volcanic processes on magmatic differentiation can be evidenced by the study of some of the most typical volcanoes of post-orogenic magmatism of Central Italy. It has been recognized that a close relationship exists between degree and type of differentiation on one hand, and structure and evolution of volcanic edifices as well as shape of their magmatic chambers on the other. The effect of the structural features of volcanic apparata on the magmatic differentiation is often so strong as to obliterate the original genetic characters of the magma. It was seen that, in Central Italy, magmas of «atlantic» affinities differentiating from basalt to trachyte, can turn to magmas of strong « mediterranean » affinities in the more superficial volcanic environments.  相似文献   

    20.
    Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号