首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Digital photogrammetry and kinematic global positioning system (GPS) techniques are investigated and compared over a volcanic area as operational approaches to map the topography and monitor surface displacements. The use of terrestrial and airborne GPS to support the photogrammetric survey allowed for operational and processing time reduction without loss of accuracy. A digital elevation model (DEM) is obtained from the processing of the high-resolution digital imagery survey, which provides detailed information over a large area. The internal accuracy of the derived DEM has been verified by the comparison of two sets of data obtained from imagery acquired in different epochs; the observed root-mean-square error of residuals ranges from a few centimetres to 15 cm depending on the morphological features. Kinematic and pseudo-kinematic GPS surveys are performed to derive accurate 3-D coordinates at monumented benchmarks and accurate elevation profiles along footpaths. The average repeatability of the GPS measurements on benchmarks is 1 cm for measurement durations of 2–3 min. The standard deviation of interpolated vertical coordinates obtained at the crossings of kinematic GPS profiles is 4.3 cm. The high quality of these GPS coordinates justifies their use also for the validation of the photogrammetric DEM. A comparison of 6000 common points provides a standard deviation of residuals of 18 cm. The results show that the deformation pattern of a volcanic area can be rapidly and accurately monitored even in the absence of geodetic benchmarks. The integration of aerial photogrammetry with GPS kinematic surveys may be considered as an optimal approach for deriving high-resolution mapping products to be used in support of studies of volcanic dynamics.  相似文献   

7.
8.
9.
Studies of interseismic strain accumulation are crucial to our understanding of continental deformation, the earthquake cycle and seismic hazard. By mapping small amounts of ground deformation over large spatial areas, InSAR has the potential to produce continental-scale maps of strain accumulation on active faults. However, most InSAR studies to date have focused on areas where the coherence is relatively good (e.g. California, Tibet and Turkey) and most analysis techniques (stacking, small baseline subset algorithm, permanent scatterers, etc.) only include information from pixels which are coherent throughout the time-span of the study. In some areas, such as Alaska, where the deformation rate is small and coherence very variable, it is necessary to include information from pixels which are coherent in some but not all interferograms. We use a three-stage iterative algorithm based on distributed scatterer interferometry. We validate our method using synthetic data created using realistic parameters from a test site on the Denali Fault, Alaska, and present a preliminary result of  10.5 ± 5.0  mm yr−1 for the slip rate on the Denali Fault based on a single track of radar data from ERS1/2.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Shear wave splitting analyses have been carried out using teleseismic data from broad-band seismograph stations deployed at temporary and permanent locations in Dronning Maud Land (DML), Antarctica. In most cases, the observed anisotropy can be related to major tectonic events that formed the present-day Antarctic continent. We rule out an anisotropic contribution from recent asthenospheric flow. At the Russian base Novolazarevskaya near the coast in central DML, waveform inversion suggests a two-layer model where the fast direction of the upper layer is oriented parallel to Archean fabrics in the lithosphere, whereas the anisotropy of the lower layer is interpreted to have been created during the Jurassic Gondwana break-up. Recordings at the South African base Sanae IV, however, show enigmatic results. For narrow backazimuthal segments, splitting parameters show strong variations together with a multitude of isotropic measurements, indicative of complex scattering that cannot be explained by simple one- or two-layer anisotropic models. In the interior of the continent, the data are consistent with single-layer anisotropy, but show significant spatial variations in splitting parameters. A set of temporary stations across the Heimefront shear zone in western DML yield splitting directions that we interpret as frozen anisotropy from Proterozoic assembly of the craton. An abrupt change in fast axis direction appears to mark a suture between the Grunehogna craton, a fragment of the Kalahari–Kaapvaal craton in southern Africa and the Mesoproterozoic Maudheim Province.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号