首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light hydrocarbons in subsurface sediments   总被引:1,自引:0,他引:1  
The major features and numerous compositional details of the indigenous C2–C7 hydrocarbon suites of argillaceous sediments are systematically temperature dependent. The relative concentrations of alicyclic compounds exhibit a consistent maximum at subsurface temperatures close to 170°F (77°C) without regard to the chemical nature of the bulk of the kerogen, whether rich or poor in hydrogen, though this strongly affects the specific yield. A continuous increase in relative alkane content follows at higher temperatures. Indices of paraffinicity may be devised. One such, termed the ‘heptane value’ (essentially the percentage of n-heptane in the b.p. range 80.7–100.9°C), possesses a linear association with temperature, provides an index of catagenesis, and frequently provides a means of appraising paleotemperatures. Regressions of heptane value on temperature are compared in two composite stratigraphic sections dominated by kerogens representing two extremes of composition. The regression coefficients differ by 7%. Yields of light hydrocarbons increase exponentially in these sections by more than three orders of magnitude along sub-parallel, temperature-dependent curves. These similarities infer universally similar generating reactions and compositionally similar suites of light hydrocarbons at given subsurface temperatures, regardless of kerogen type, particularly for sections which underwent burial and heating during the Tertiary period.  相似文献   

2.
Three fractions of organic matter: lipid (benzene:methanol-extractable), humic acid (alkali-extractable) and kerogen (residue) were extracted from a young marine sediment (Tanner Basin, offshore southern California) and heated for different times (5–116 hr) and temperatures (150°–410°C). The volatile (gases) and liquid products, as well as residual material, were then analyzed. On a weight basis, the lipid fraction produced 58% of the total identified n-alkanes, the kerogen fraction 41%, and the humic acid <1%. Whereas n-alkanes produced from lipid show a CPI > 1.0, those produced by thermal alteration of kerogen display a CPI < 1.0. The volatiles produced by heating the lipid and humic acid fractions were largely CO2 and water, whereas those produced from heated kerogen also included methane, hydrogen gas and small amounts of C2–C4 hydrocarbons. A mechanism for hydrocarbon production due to the thermal alteration of organic constituents of marine sediment is discussed.  相似文献   

3.
Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas). Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen) in a Mississippian marine shale decomposed to gas (C1–C5). The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour), nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock) than at 350°C by thermal cracking (12 μg C1–C5/g rock). The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible.  相似文献   

4.
Open-system non-isothermal pyrolysis up to 1,200°C in combination with elemental analysis was used to study the thermal liberation of molecular nitrogen (N2) from sedimentary rocks and kerogen concentrates of Palaeozoic age from the Central European Basin system and an Eocene shale (Liaohe Basin, China) with a high content (36%) of ammonium feldspar (buddingtonite). The N/Corg (atomic) ratios of the kerogen concentrates ranged from 0.005 to 0.014, which represents the range commonly observed for coals. Bulk N/Corg ratios of the Palaeozoic shales extended from 0.035 to 0.108, indicating the presence of significant amounts of inorganic nitrogen. Namurian A and A-B (CnA; CnA-B) samples typically exhibited the earliest onset of N2 generation with intense, characteristic peaks around 600°C. N2 liberation from the buddingtonite-rich sample occurred at higher temperatures, with a broad peak around 700°C. Pyrograms of the kerogen concentrates showed no or strongly reduced N2 generation in the 500–700°C range. On-line isotope-specific analysis of the pyrolytically liberated N2 on one sample revealed a variability of ∼10‰ in the δ15N values and a steady increase in δ15N with temperature during the main phase of N2 generation.  相似文献   

5.
Pyrolysis experiments were carried out on Monterey formation kerogen and bitumen and Green River formation kerogen (Type II and I, respectively), in the presence and absence of montmorillonite, illite and calcite at 200 and 300°C for 2–2000 hours. The pyrolysis products were identified and quantified and the results of the measurements on the gas and condensate range are reported here.A significant catalytic effect was observed for the pyrolysis of kerogen with montmorillonite, whereas small or no effects were observed with illite and calcite, respectively. Catalytic activity was evident by the production of up to five times higher C1–C6 hydrocarbons for kerogen with montmorillonite than for kerogen alone, and by the dominance of branched hydrocarbons in the C4–C6 range (up to 90% of the total amount at any single carbon number). This latter effect in the presence of montmorillonite is attributed to cracking via a carbonium-ion [carbocation] intermediate which forms on the acidic sites of the clay. No catalytic effect, however, was observed for generation of methane and C2 hydrocarbons which form by thermal cracking. The catalysis of montmorillonite was significantly greater during pyrolysis of bitumen than for kerogen, which may point to the importance of the early formed bitumen as an intermediate in the production of low molecular weight hydrocarbons. Catalysis by minerals was also observed for the production of carbon dioxide.These results stress the importance of the mineral matrix in determining the type and amount of gases and condensates forming from the associated organic matter under thermal stress. The literature contains examples of gas distributions in the geologic column which can be accounted for by selective mineral catalysis, mainly during early stages of organic matter maturation.  相似文献   

6.
Alkaline potassium permanganate oxidation of a young kerogen (lacustrine) and 34 model compounds (saturated and unsaturated fatty acids, hydroxy acid, aliphatic dicarboxylic acids, aliphatic alcohols, normal hydrocarbon, β-carotene, phenolic acids, benzenecarboxylic acids, carbohydrates, amino acids and proteins) were conducted, followed by GC and GC-MS analysis of the degradation products. The stability of the degradation products of kerogen in permanganate solution and the relationship between degradation products and kerogen building blocks were determined.The results showed that aliphatic acids C12–C16 monocarboxylic acids and C6–C10 α,ω-dicarboxylic acids) were rather susceptible to oxidation compared with benzenecarboxylic acids and the former were degraded into lower molecular weight decarboxylic acids. It was concluded that oxidation at milder conditions (60° C, 1 hr) is appropriate for qualitative and quantitative characterization of the aliphatic structure of young kerogen. It was noteworthy that benzoic acid was produced in a significant amount by oxidation of amino acids (phenylalanine) and proteins, C18-isoprenoidal ketone from phytol, and C8 and C9 α,ω-dicarboxylic acids from unsaturated fatty acids, respectively; furthermore, 2,2-dimethyl succinic and 2,2-dimethyl glutaric acids were produced from β-carotene.  相似文献   

7.
The thermal expansion of anhydrite, CaSO4, has been measured from 22° to 1,000° C by X-ray diffraction, using the Guinier-Lenné heating powder camera. The heating patterns were calibrated with Guinier-Hägg patterns at 25° C, using quartz as internal standard. Heating experiments were run on natural anhydrite (Bancroft, Ontario), which at room temperature has lattice constants in close agreement with those of synthetic material. The orthorhombic unit cell at 22° C (space group Amma) has a=7.003 (1) Å, b=6.996 (2) Å and c=6.242 (1) Å, V=305.9 (2) Å3. At room temperature, the thermal expansion coefficients α and β (α in °C?1×104, β in °C?2×108) are for a, 0.10, ?0.69; for b, 0.08, 0.19; for c, 0.18, 1.60; for V, 0.37, 1.14. Second-order coefficients provide an excellent fit over the whole range to 1,000° C.  相似文献   

8.
The radiation resistance of the phase (Gd,Cm)2Sn2O7 with a pyrochlore-type structure containing 3.0 wt % 244Cm was studied. It was established that amorphization occurs at a dose of 1019 α-decay/g (1.52 displacements per atom), which is 2–5 times higher than that needed for amorphization of titanate and titanate–zirconate pyrochlore phases with a similar structure. The heating of the amorphous ceramics restores the structure of the pyrochlore. The restoration process begins in the temperature interval of 600–700°C. This allows us to estimate the critical amorphization temperature as 650°C. On the 14th day, the rate of Cm leaching from the initial sample in water at 90°C is 10–1; Gd, 10–2; and Sn, 10–3 g/(m2 day). After amorphization the leaching rate increases by an order of magnitude (Cm) and two orders of magnitude (Gd), but it does not change for Sn. Compared to the zirconate and titanate–zirconate phases, stannate pyrochlore is markedly less resistant in water and cannot be regarded as a matrix for the immobilization of REE-actinide fraction wastes.  相似文献   

9.
The paper presents data on the composition of biomarkers from bitumen extracts and the chemical structure of kerogen from Corg-rich sedimentary rocks before and after hydrothermal treatment in an autoclave at 300°C. Samples selected for this study are kukersite and Ordovician Dictyonema shale from the Baltics, Domanik oil shale from the Ukhta region, Upper Permian brown coal from the Pre-Ural foredeep, carbonaceous shale from the Oxfordian horizon of the Russian plate, and Upper Jurassic oil shales from the Sysola oil shale bearing region. The rocks contain type I, II, III, and II-S kerogens. The highest yield of extractable bitumen is achieved for Type II-S kerogen, whereas Type III kerogen produces the lowest amount of bitumen. The stages of organic matter thermal maturation achieved during the experiments correspond to a transition from PC2–3 to MC1–2. The 13C NMR data on kerogen indicate that the aromatic structures of geopolymers underwent significant changes.  相似文献   

10.
High maturity oil and gas are usually generated after primary oil expulsion from source rocks, especially from oil prone type I/II kerogen. However, the detailed impacts of oil expulsion, or retention in source rock on further thermal degradation of kerogen at the high maturity stage remain unknown. In the present study, we collected an Ordovician Pingliang shale sample containing type II kerogen. The kerogens, which had previously generated and expelled oil and those which had not, were prepared and pyrolyzed in a closed system, to observe oil expulsion or oil retention effects on later oil and gas generation from kerogen. The results show that oil expulsion and retention strongly impacts on further oil and gas generation in terms of both the amount and composition in the high maturity stage. Gas production will be reduced by 50% when the expulsion coefficient reaches 58%, and gas from oil-expelled kerogen (less oil retained) is much drier than that from fresh kerogen. The oil expulsion also causes n-alkanes and gas compounds to have heavier carbon isotopic compositions at high maturity stages. The enrichment of 13C in n-alkanes and gas hydrocarbons are 1‰ and 4–6‰ respectively, compared to fresh kerogen. Oil expulsion may act as open system opposite to the oil retention that influences the data pattern in crossplots of δ13C2–δ13C3 versus C2/C3, δ13C2–δ13C3 versus δ13C1 and δ13C1–δ13C2 versus ln(C1/C2), which are widely used for identification of gas from kerogen cracking or oil cracking. These results suggest that the reserve estimation and gas/source correlation in deep burial basins should consider the proportion of oil retention to oil expulsion the source rocks have experienced.  相似文献   

11.
Anammox, the microbial anaerobic oxidation of NH4+ by NO2 to produce N2, is recognised as a key process in the marine, freshwater and soil N cycles, and has been found to be a major sink for fixed inorganic N in the ocean. Ladderane lipids are unique anammox bacterial membrane lipids used as biomarkers for such bacteria in recent and past environmental settings. However, their fate during diagenesis and early catagenesis is not well constrained. In this study, hydrous pyrolysis experiments were performed on anammox bacterial biomass and the generated aliphatic hydrocarbons, present in oil generated at 220–365 °C, were analysed. A unique class of hydrocarbons was detected, and a representative component was isolated and rigorously identified using 2D nuclear magnetic resonance (NMR) spectroscopy. It consisted of C24 to C31 branched long chain alkanes with two internal ethyl and/or propyl substituents. The alkanes were generated above 260 °C, with maximum generation at 320 and 335 °C. Their stable carbon isotopic values were depleted in 13C, similar to carbon isotope values of the original anammox lipids, indicating that they were thermal products generated from lipids of anammox bacterial biomass. A range of sediments from different geological periods where anammox may have been an important process was screened for the presence of these compounds as possible catagenetic products. They were not detected, either because the concentration was too low, or the sediments screened were too immature for them to have been generated, or because the artificially produced products of anammox lipids may not reflect the natural diagenetic and catagenetic products of ladderane lipids.  相似文献   

12.
Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200–400°C, 2–1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300°C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.  相似文献   

13.
Although oil cracking has been documented as one of the important sources of gas in many overmature marine sedimentary basins, the chemical and carbon isotopic signatures of gases of this origin are still open to question. In this study a Cambrian crude oil from the central Tarim basin, along with its main separated fractions (saturates, aromatics and asphaltenes), were pyrolyzed in sealed gold tubes to investigate how generated gases vary in chemical and carbon isotopic composition and how this variation would influence the genetic interpretation of oil cracking gas. The results indicate that the gases from cracking of aromatics and asphaltenes are much drier and more enriched in 13C than the gases from the cracking of saturates and crude oil at the same level of thermal maturity. In the experimental run of 20 °C/h, the dryness index of the gases (defined as the volume percentage of C1 in C1–5) from the cracking of saturates ranges from 26.2–90.6% with the methane carbon isotope change ranging from −54.8‰ to −35.5‰, whereas the dryness index is never lower than 60.6% for the gases from the cracking of aromatics with methane carbon isotope ranging from −39.9‰ to −32.2‰. Correspondingly, experimental data for the four samples plot in different areas in diagrams designed to distinguish oil cracking gas from kerogen cracking gas, such as ln(C2/C3) vs. δ13C2δ13C3 and δ13C1 vs. δ13C2δ13C3, indicating compositional variability of crude oil could assert an important influence in these diagrams. Therefore it is prudent to bring other geological constraints into consideration to avoid misinterpretation.The kinetic parameters for the bulk generation of C1–5 gas and the methane carbon isotope fractionation extrapolated to geological conditions of 2 °C/Ma and an initial temperature of 50 °C show that the temperatures of C1–5 gas generation from the aromatics and asphaltenes are lower than those from the saturates and crude oil due to their lower activation energies and frequency factors. Generation of C1–5 gases from the aromatics is modeled to be initiated about 122 °C whereas the initiation temperature for the saturates sample is 176 °C. Below 189 °C (EasyRo = 1.8%), the yields of C1–5 gases follow the order: aromatics > asphaltenes > crude oil > saturates. At similar thermal maturity levels, the methane carbon isotopic compositions are significantly different for the four samples, with an order of 13C enrichment: aromatics > asphaltenes > crude oil > saturates, however the difference in methane carbon isotopes becomes smaller with increasing temperature. This indicates that methane carbon isotopic values can be significantly different for gases cracked from oils that are compositionally diverse, especially in the early stage of methane generation.  相似文献   

14.
The paper presents results of experiments aimed at diamond synthesis in the Fe–C–S system at 5.3–5.5 GPa and temperatures of 1300–1370°C and detailed data on the microtextures of the experimental samples and the composition of the accompanying phases (Fe3C and Fe7C3 carbides, graphite, and FeS). It is demonstrated that diamond can be synthesized after temperatures at which carbides are formed are overcome and can crystallize within the temperature range of 1300°C (temperature of the peritectic reaction melt + diamond = Fe7C3) to 1370°C (of thermodynamically stable graphite) under the appearance experimental pressure. The possible involvement of natural metal- and sulfur-bearing compounds in the origin of natural diamond is discussed.  相似文献   

15.
Previously studied thermosequences of wood (chestnut) and grass (rice straw) biochar were subjected to hydrogen pyrolysis (hypy) to evaluate the efficacy of the technique for determining pyrogenic carbon (CP) abundance. As expected, biochar from both wood and grass produced at higher temperature had higher CP amount. However, the trend was not linear, but more sigmoidal. CP/CT ratio values (CT = total organic carbon) for the wood thermosequence were ⩽0.03 at biochar production temperature (TCHAR)  300 °C. They increased dramatically until 600 °C and remained relatively constant and near unity at higher biochar production temperature. Grass biochar was similar in profile, but CP/CT values rose dramatically after 400 °C. The findings are consistent with the hypothesis that hypy residues contain polycyclic aromatic hydrocarbons (PAHs) with a degree of condensation above at least 7–14 fused rings, with labile organic matter and pyrogenic PAHs below this degree of condensation removed by hypy.Both wood and grass thermosequences displayed δ13CP values that decreased with increased TCHAR, indicating that recalcitrant carbon compounds (pyrogenic aromatic PAHs with a relatively high degree of condensation) were first formed from structural components with relatively high δ13C values (e.g. cellulose). Relatively constant δ13C values at TCHAR  500 °C suggested the dominant pyrolysis reaction was condensation of PAHs with no additional fractionation. Comparison of hypy with benzene polycarboxylic acid (BPCA), ‘ring current’ NMR and pyrolysis gas chromatography–mass spectrometry (GC–MS) results from the same suite of samples indicated a consistent overview of the structure of CP, but provided unique and complimentary information.  相似文献   

16.
The Kalatongke Cu–Ni sulfide deposits located in the East Junggar terrane, northern Xinjiang, western China are the largest magmatic sulfide deposits in the Central Asian Orogenic Belt (CAOB). The chemical and carbon isotopic compositions of the volatiles trapped in olivine, pyroxene and sulfide mineral separates were analyzed by vacuum stepwise-heating mass spectrometry. The results show that the released volatiles are concentrated at three temperature intervals of 200–400°C, 400–900°C and 900–1200°C. The released volatiles from silicate mineral separates at 400–900°C and 900–1200°C have similar chemical and carbon isotopic compositions, which are mainly composed of H2O (av. ~92 mol%) with minor H2, CO2, H2S and SO2, and they are likely associated with the ore-forming magmatic volatiles. Light δ13CCO2 values (from ?20.86‰ to ?12.85‰) of pyroxene indicate crustal contamination occurred prior to or synchronous with pyroxene crystallization of mantle-derived ore-forming magma. The elevated contents of H2 and H2O in the olivine and pyroxene suggest a deep mantle-originated ore-forming volatile mixed with aqueous volatiles from recycled subducted slab. High contents of CO2 in the ore-forming magma volatiles led to an increase in oxygen fugacity, and thereby reduced the solubility of sulfur in the magma, then triggered sulfur saturation followed by sulfide melt segregation; CO2 contents correlated with Cu contents in the whole rocks suggest that a supercritical state of CO2 in the ore-forming magma system under high temperature and pressure conditions might play a key role in the assemblage of huge Cu and Ni elements. The volatiles released from constituent minerals of intrusion 1# have more CO2 and SO2 oxidized gases, higher CO2/CH4 and SO2/H2S ratios and lighter δ13CCO2 than those of intrusions 2# and 3#. This combination suggests that the higher oxidation state of the volatiles in intrusion 1# than intrusions 2# and 3#, which could be one of key ore-forming factors for large amounts of ores and high contents of Cu and Ni in intrusion 1#. The volatiles released at 200–400°C are dominated by H2O with minor CO2, N2+CO and SO2, with δ13CCO2 values (?25.66‰ to ?22.98‰) within the crustal ranges, and are considered to be related to secondary tectonic– hydrothermal activities.  相似文献   

17.
Three sets of pyrolysis experiments were performed on extracted coal (Ro% 0.39), coal (initial bitumen 13.5 mg/g coal) and bitumen enriched coal (total bitumen 80.9 mg/g coal) at two heating rates of 2 °C/h and 20 °C/h in confined systems (gold capsules). For all three experiments, the yields of bitumen, Σn-C8+, aromatic components and ΣC2–5 at first increase and then decrease with increasing EASY%Ro and reach the highest values within the EASY%Ro ranges of 0.67–1.08, 1.07–1.19, 1.46–1.79 and 1.46–1.68, respectively. In contrast, C1/ΣC1–5 ratio at first decreases and then increases with EASY%Ro and reaches a minimum value in EASY%Ro range of 0.86–1.08, closely corresponding to the maximum values of the yields of bitumen and Σn-C8+. Methane yields increase consistently with EASY%Ro. Nearly half of the maximum yield of methane from kerogen was generated at EASY%Ro > 2.2. The differences in methane yields among the three experiments at the same thermal stress are relatively minor at EASY%Ro < 2.2, but are greater with thermal stress at EASY%Ro > 2.2. This demonstrates that the kerogen always retained relatively more hydrogen and hydrocarbon generative potential at the postmature stage of bitumen rich coal than the extracted coal or coal.The maximum yield of ethane is 20–25% higher in the bitumen rich coal experiment than the extracted coal or coal, while the maximum yields of C3, C4 and C5 in the former are double to triple those in the latter. This result demonstrates that the added bitumen in bitumen rich coal substantially increased the generation of these wet gases. However, the averaged values of activation energies (with the same frequency factors) for both the generation and cracking of individual wet gases are similar and do not show consistent trends among the three experiments. For all three experiments, activation energies for the generation and cracking of wet gases are significantly lower than those in previously published oil pyrolysis experiments with same frequency factors (Pan et al., 2012; Organic Geochemistry 45, 29–47). Methane δ13C values at the maximum temperature or EASY%Ro are close to those of initial wet gases, especially C3, implying that the major part of methane shared a common initial precursor with wet gases, i.e., free and bound liquid alkanes.  相似文献   

18.
19.
《Applied Geochemistry》2005,20(3):587-597
Closed pyrolyses were performed on the Boom Clay kerogen to simulate the weak thermal stress applied during the in situ CERBERUS heating experiment (80 °C for 5 a). Two stronger thermal stresses, encompassing the range generally considered for the long-term disposal of high-activity nuclear waste (80 °C for 1 ka and 120 °C for 3 ka), were also simulated. Quantitative and qualitative studies were carried out on the products thus generated with a focus on the C12+ fraction, especially on its polar components. It thus appeared that the soluble C12+ fractions generated during these simulation experiments comprise a wide variety of polar O- and/or N-containing compounds, including carboxylic acids and phenols. The nature and/or the relative abundance of these polar compounds exhibit strong variations, with the extent of the thermal stress, reflecting the primary cracking of different types of structures with different thermal stability and the occurrence of secondary degradation reactions. These observations support the idea that the compounds, generated upon exposure of the Boom Clay kerogen to a low to moderate thermal stress, may affect the effectiveness of the geological barrier upon long-term storage of high-activity nuclear waste.  相似文献   

20.
Thermodynamic simulation of the system living matter (algae, zooplankton, or green plants) + mineral matter (25% carbonates + 75% clay minerals) + standard seawater at temperatures and pressure corresponding to diagenesis indicates that kerogen can be synthesized, together with hydrocarbons and carbon dioxide, in the reaction mix. The removal of CO2(g) and N2(g) from the system is favorable for the reaction Δ1C292H288O12 (s; H/C = 0.99, O/C = 0.041) → Δ2C128H68O7 (s; H/C = 0.53, O/C = 0.055) + xСH4(aq) + yCO2(aq) + zH2O, whose constant and stoichiometric coefficients were calculated based on the simulation results. It is demonstrated that a pressure increase is favorable, while a temperature increase is not, for the procedure of this reaction at P-T parameters of diagenesis: log K =–567 (20°C, 35 bar), 1170 (20°C, 200 bar),–1530 (20°C, 60 bar), and +1030 (20°C, 600 bar).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号