首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
Sevier Lake is the modern lake in the topographically closed Sevier Lake basin, and is fed primarily by the Sevier River. During the last 12 000 years, the Beaver River also was a major tributary to the lake. Lake Bonneville occupied the Sevier Desert until late in its regressive phase when it dropped to the Old River Bed threshold, which is the low point on the drainage divide between the Sevier Lake basin and the Great Salt Lake basin. Lake Gunnison, a shallow freshwater lake at 1390 m in the Sevier Desert, overflowed continuously from about 12 000 to 10 000 yr B.P., into the saline lake in the Great Salt Lake basin, which continued to contract. This contrast in hydrologic histories between the two basins may have been caused by a northward shift of monsoon circulation into the Sevier Lake basin, but not as far north as the Great Salt Lake basin. Increased summer precipitation and cloudiness could have kept the Sevier Lake basin relatively wet.By shortly after 10 000 yr B.P. Lake Gunnison had stopped overflowing and the Sevier and Beaver Rivers had begun depositing fine-grained alluvium across the lake bed. Sevier Lake remained at an altitude below 1381 m during the early and middle Holocene. Between 3000 and 2000 yr B.P. the lake expanded slightly to an altitude of about 1382.3 m. A second expansion, probably in the last 500 years, culminated at about 1379.8 m. In the mid 1800s the lake had a surface altitude of 1379.5 m. Sevier Lake was essentially dry (1376 m) from 1880 until 1982. In 1984–1985 the lake expanded to a 20th-century high of 1378.9 m in response to abnormally high snow-melt runoff in the Sevier River. The late Holocene high stands of Sevier Lake were most likely related to increased precipitation derived from westerly air masses.This is the first of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

3.
Glacial Lake Wisconsin was a large proglacial lake that formed along the southern margin of the Laurentide Ice Sheet during the Wisconsin glaciation. It was formed when ice of the Green Bay Lobe came into contact with the Baraboo Hills in southwestern Wisconsin and blocked the south-flowing Wisconsin River. During early glacial recession, the ice dam failed catastrophically and the lake drained in about a week. Despite early recognition of the former lake and the likelihood that it failed catastrophically, outflow rates during the failure have not been previously evaluated. Estimates based on step-backwater modeling indicate that peak discharge was between 3.6 and 5.3 × 104 m3/s in the lower Wisconsin River. As an alternate method, we used a previously derived empirical relationship between lake volume and peak discharge for dam-break events. From a digital elevation model altered to incorporate isostatic depression, we estimated the lake volume to be 87 km3 just prior to dam breach, suggesting that the flooding magnitude was as high as 1.5 × 105 m3/s at the outlet. Adjusting these results for downstream flood wave attenuation gives a discharge of around 4.4 × 104 m3/s in the lower reach, which closely matches the results of the step-backwater modeling. These estimates of discharge from the catastrophic failure of ice-marginal lakes improve our understanding of the processes that have produced the morphology and behavior of present-day upper Midwest river systems.  相似文献   

4.
Wisconsin's Central Sand Plain east of the Wisconsin River is composed of eolian sand forming high-relief dunes surrounded by sand sheets and scattered low-relief dunes. To establish a maximum age for dune formation, three samples for optical dating were taken from glacial Lake Wisconsin lacustrine sediment that underlies eolian sand. These age estimates range from 19.3 to 13.6ka. Age estimates taken from within or at the base of the dunes range from 14.0 to 10.6ka. Samples taken from < 2m of the ground surface were slightly younger, indicating dunes were stabilized between 11.8 and 5.5ka. The younger ages near the surface of some dunes were most likely the result of pedoturbation or localized problems with applying the optical dating method. The majority of the optical age estimates from dunes (18 of 21) indicated that most of the dunes were active between 14 and 10ka and that most dune activity ended by 10ka. These ages suggest that localized activity on dune crests may have occurred in the Holocene but would have been limited to < 1m of sand accumulation. The timing of dune activity and the lack of any significant Holocene reactivation suggest that dune activation in this setting cannot be attributed solely to changes in aridity. Instead, we attribute dune formation to changes in sediment availability from either sand inputs from the Wisconsin River or the melting of permafrost.  相似文献   

5.
Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37–25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins of the lake and dilution of detrital material by biogenic silica and other organic matter.  相似文献   

6.
薛春汀  周良勇 《地理研究》2010,29(11):1961-1970
现在的洪泽湖和淮河中游河道不断淤高,致使淮河中游洪涝不断。入洪泽湖后淮河水主要流入长江。而苏北北部地区需要水,因入海泥沙数量太少而致海岸侵蚀问题不能根本解决,那里需要淮河的泥沙。为改变这种不合理的格局。在洪泽湖北岸和浅水区开挖与洪泽湖分离的河道,连接完成远期工程的淮河入海水道和拓宽、挖深的淮沭河—北六塘河—新沂河水道,使淮河水沙只经过这两条水道到达黄海,改变淮河水沙不合理的资源分配。新水道路程短,比降大,使洪泽湖和淮河中游河道不再淤高,并将进一步使淮河中游水道刷深,减轻淮河中游洪涝灾害,并为洪泽湖湖底高程降低创造条件。通过分析现在淮河的输沙量、输沙模数,与历史时期和其他流域对比,认为连云港至射阳河口这段海岸将改变为北部稳定,南部缓慢进积,形成新的淮河三角洲,彻底解决苏北海岸侵蚀问题。  相似文献   

7.
During the late Wisconsin, glacial flour from alpine glaciers along the east side of the Cascade Range in southern Oregon was deposited in Upper Klamath Lake. Quantitative interpretation of magnetic properties and grain-size data of cored sediments from Caledonia Marsh on the west side of the lake provides a continuous record of the flux of glacial flour spanning the last 37 000 calendar years. For modeling purposes, the lake sediments from the 13-m core were divided into three sedimentary components defined from magnetic, geochemical, petrographic, and grain-size data. The components are (1) strongly magnetic, glacial flour made up of extremely fine-grained, fresh volcanic rock particles, (2) less magnetic lithic material made up of coarser, weathered volcanic detritus, and (3) non-magnetic biogenic material (largely biogenic silica). Quantitative interpretation is possible because there has been no significant postdepositional destruction or formation of magnetic minerals, nor alteration affecting grain-size distributions. Major steps involved in the interpretation include: (1) computation of biogenic and lithic components; (2) determination of magnetic properties and grain-size distributions of the non-glacial and glacial flour end-members; (3) computation of the contents of weathered and glacial flour components for each sample; (4) development of an age model based on the mass accumulation of the non-glacial lithic component; and (5) use of the age model and glacial flour contents to compute the flux of glacial flour. Comparison of the glacial flour record from Upper Klamath Lake to mapped glacial features suggests a nearly linear relation between flux of glacial flour and the extent of nearby glaciers. At 22 ka, following an extended period during which glaciers of limited size waxed and waned, late Wisconsin (Waban) glaciers began to grow, reaching their maximum extent at 19 ka. Glaciers remained near their maximum extent for 1000 years. During this period, lake sediments were made up of 80% glacial flour. The content of glacial flour decreased as the glaciers receded, and reached undetectable levels by 14 ka.  相似文献   

8.
ABSTRACT

Tree rings preserve important records of past flooding. We present the results of an examination of inter-annual tree-ring anatomical variability and vessel width in overcup oak (Quercus lyrata) and river flooding at a bottomland hardwood forest site near the confluence of the White and Mississippi Rivers. We developed two flood chronologies based on (1) visual identification of “flood-ring” anatomical anomalies and (2) a simple method for quantitative measurements of earlywood vessel width (VW). Using visual flood rings, we have developed a response index (RI) chronology of floods from 1780–2013 and, using the VW measurements, we have developed a quantitative reconstruction of spring river levels from 1800–2013. Both the RI and VW chronologies are strongly related to spring river flooding and indicate that major floods such as those in 1805, 1826, 1844, 1852, 1858, occurred in the period prior to the systematic collection of stage data, and that the frequency of extreme events has greatly varied over the past two centuries. These chronologies provide important new information about Lower Mississippi River flooding in past centuries, and our simple method of measuring VW is a potentially useful new approach to the development of tree-ring records of flooding.  相似文献   

9.
Ice surface topography of a late Pleistocene glacier complex, herein named the Taylor River Glacier Complex (TRGC), was reconstructed on the basis of detailed mapping of glacial landforms combined with analyses of aerial photos and topographic maps. During the last glacial maximum (LGM), the TRGC covered an area of 215 km2 and consisted of five valley or outlet glaciers that were nourished by accumulation in cirques basins and/or upland ice fields.Equilibrium-line altitudes (ELAs) for the glaciers of the TRGC were estimated using the accumulation-area ratio method, assuming that ratio to be 0.65 ± 0.05. ELAs thus derived ranged from about 3275 to 3400 m, with a mean of 3340 ± 60 m. A degree-day model (DDM) was used to infer the climatic significance of the LGM ELA. With no appreciable differences in precipitation with respect to modern climate, the ELA implies that mean summer temperatures during the LGM were 7.6 °C cooler than today. The DDM was also used to determine the temperatures required to maintain steady-state mass balances for each of the reconstructed glaciers. The required reductions in summer temperature vary little about a mean of 7.1 °C. The sensitivity of these results to slight (± 25%) changes assumed for LGM precipitation are less than ± 0.5 °C. Even under an LGM climate in which precipitation is assumed to be substantially different (± 50%) than the present, mean summer temperatures must be on the order of 7.0 to 8.5 °C lower to depress equilibrium lines to LGM altitudes. The greater sensitivity of the ELA to changes in temperature suggests that glaciation in the region was driven more by decreases in summer temperature rather than increases in precipitation.  相似文献   

10.
This paper deals with the investigation of the upper 11.6 m portion of a long drill core (KDP-01) taken from the bottom sediments of Lake Khubsugul. Ostracod species and their assemblages recovered from the core were analyzed. The data are compared with the carbonate and sulfate values obtained from bulk sediment, as well as with the flux of the coarse terrigenous fraction (>200 m) from the same core. Based on the previously calculated depth-age sedimentary model, the oldest age of the core studied here is about 230 ka. The four ostracod species recovered in the core are Cytherissa lacustris, Candona lepnevae, Limnocythere inopinata and Leucocythere sp. According to the distribution of those ostracods, we distinguish four main periods, each of about 50 ka long. Based on the ecological requirements of extant ostracods, two assemblages typifying a low water level and high salinity, on the first hand, and another representing freshwater and high lake level are recognized. The first “high salinity” ostracods correspond to “cold” periods as seen globally, while “freshwater” ostracods are associated with interglacials. Ostracod valves are absent during interglacial optima. This may be due to chemical dissolution of calcium carbonate related to organic matter decay at the initial stages of diagenesis, probably because during interglacials, in contrast to glacials, organic matter flux reaching the lake bottom were significantly higher. The periodicity in the development of ostracod species assemblages follows 17, 24 and 47 ka cycles related to orbital forcing. Its diversity is correlated with summer temperature fluctuations in northern altitudes for the past 230 ka. The maximum in species diversity follows the temperature maxima, by about 1.5 and 2 ka. Overall, the data obtained demonstrate a correlation between climatic changes and variations in specific and quantitative ratios of ostracod species during the last 230 ka.  相似文献   

11.
Upper Klamath Lake, in south-central Oregon, contains long sediment records with well-preserved diatoms and lithological variations that reflect climate-induced limnological changes. These sediment archives complement and extend high resolution terrestrial records along a north–south transect that includes areas influenced by the Aleutian Low and Subtropical High, which control both marine and continental climates in the western United States. The longest and oldest core collected in this study came from the southwest margin of the lake at Caledonia Marsh, and was dated by radiocarbon and tephrochronology to an age of about 45 ka. Paleolimnological interpretations of this core, based upon geochemical and diatom analyses, have been augmented by data from a short core collected from open water environments at nearby Howards Bay and from a 9-m core extending to 15 ka raised from the center of the northwestern part of Upper Klamath Lake. Pre- and full-glacial intervals of the Caledonia Marsh core are characterized and dominated by lithic detrital material. Planktic diatom taxa characteristic of cold-water habitats (Aulacoseira subarctica and A. islandica) alternate with warm-water planktic diatoms (A. ambigua) between 45 and 23 ka, documenting climate changes at millennial scales during oxygen isotope stage (OIS) 3. The full-glacial interval contains mostly cold-water planktic, benthic, and reworked Pliocene lacustrine diatoms (from the surrounding Yonna Formation) that document shallow water conditions in a cold, windy environment. After 15 ka, diatom productivity increased. Organic carbon and biogenic silica became significant sediment components and diatoms that live in the lake today, indicative of warm, eutrophic water, became prominent. Lake levels fell during the mid-Holocene and marsh environments extended over the core site. This interval is characterized by high levels of organic carbon from emergent aquatic vegetation (Scirpus) and by the Mazama ash (7.55 ka), generated by the eruption that created nearby Crater Lake. For a brief time the ash increased the salinity of Upper Klamath Lake. High concentrations of molybdenum, arsenic, and vanadium indicate that Caledonia Marsh was anoxic from about 7 to 5 ka. After the mid-Holocene, shallow, but open-water environments returned to the core site. The sediments became dominated (>80%) by biogenic silica. The open-water cores show analogous but less extreme limnological and climatic changes more typical of mid-lake environments. Millennial-scale lake and climate changes during OIS 3 at Upper Klamath Lake contrast with a similar record of variation at Owens Lake, about 750 km south. When Upper Klamath Lake experienced cold-climate episodes during OIS 3, Owens Lake had warm but wet episodes; the reverse occurred during warmer intervals at Upper Klamath Lake. Such climatic alternations apparently reflect the variable position and strength of the Aleutian Low during the mid-Wisconsin.  相似文献   

12.
13.
赣北黄茅潭湖泊沉积记录的240年以来古洪水事件   总被引:1,自引:1,他引:0  
古洪水研究是近几十年来全球变化研究的一个热点,同时也是难点。本文利用赣北黄茅潭的湖泊沉积,建立了小冰期以来全球变暖背景下的区域洪水记录。采用210Pb和137Cs方法厘定了地层年代,基于粒度与元素地球化学指标的对比分析,揭示了器测记录(1950年)以来指标记录的特点与区域日降水超过50 mm天数的关系,认为黄茅潭HMT-01孔粒度(包括粗粉砂+砂/粘土比值、平均粒径)和Zr/Rb、Ti/Rb、Zr/Fe比值可作为洪水指标记录,共识别出1950-2010年期间记载的13次洪水事件中的11次。基于这些指标记录及指标特点,共识别1769-1950年间由历史文献记录的31次洪水事件中的23次,识别率达74.2%。研究表明:①湖泊沉积中Zr/Rb、Ti/Rb、Zr/Fe比值和粒度参数(平均粒径、粗粉砂+砂/粘土)作为洪水指标,对洪水事件沉积有较好的指示作用,且Zr/Rb比值对洪水事件的检出率较高;②黄茅潭流域洪水发生频率暖期高于冷期;③年代际尺度上,1820s-1840s,1860s-1870s为19世纪冷期黄茅潭洪水高频期,这两个阶段对应东亚夏季风偏强,长江中下游地区降雨较多;20世纪赣北黄茅潭洪水基本随1920s-1940s,1980s-1990s两个变暖阶段而高频出现,与长江中下游大洪水演变特点基本一致。研究结果为利用湖泊沉积记录反演过去的洪水变化,延长洪水序列、认识洪水规律提供了一定的科学依据。  相似文献   

14.
The Imja Glacier Lake (Imja Tsho) (1.03 km2 in 2007) is repeatedly cited as one of the most dangerous glacial lakes in the Himalaya with a glacial lake outburst flood (GLOF) claimed to be imminent. Knowledge of lake development and its dynamics, however, is limited and forecasts of a possible outburst are not scientifically based. Nevertheless, prospects for such a catastrophe are repeatedly exaggerated, attracting alarmist mass media coverage. The paper provides an assessment of the lake expansion rates from 1956 to 2007. Stage 1 (1956–1975), slowest: coalescence of several small supra-glacial ponds; Stage 2 (1975–1978), a short period of most rapid expansion; Stage 3 (1978–1997), slow: gradual expansion of single lake; and Stage 4 (1997–2007), renewed acceleration: mainly eastward expansion into the glacier surface. The lake's water level has fallen from 5041 m to 5004 m (1964–2006). The results show that there is no immediate danger of catastrophic outburst although the dynamics of up-glacier and down-valley lake expansion, fluctuation of lake water level, and dead-ice morphology changes should be continuously and comprehensively monitored. Alarmist prognostications based solely upon rapid areal expansion are counterproductive.  相似文献   

15.
Diatom dissolution in saline lakes represents an important obstacle to the quantitative reconstruction of water chemistry and climate from lake sediment archives. This problem is here approached experimentally by artificially dissolving diatom-bearing core sediment from Lake Manyara, Tanzania. Manyara holds one of the longest continuous palaeolimnological records from tropical Africa although its interpretation is based on a fragmentary diatom record due to frustule dissolution. These experiments have revealed clear changes in assemblage composition as dissolution operated differentially with respect to diatom taxa. Differential dissolution has considerable impact on the water chemistry estimates derived from transfer functions. Taphonomy, rather than environmental change, may have been responsible for minor fluctuations in the diatom assemblages from Manyara, although major palaeohydrological changes during the Late Pleistocene and Early Holocene can be identified. Particularly well represented by MANE-87 is a period of intermediate lake level between 27 500 and 23 000 14C yr BP which has regional palaeohydrological significance.  相似文献   

16.
Southern California faces an imminent freshwater shortage. To better assess the future impact of this water crisis, it is essential that we develop continental archives of past hydrological variability. Using four sediment cores from Lake Elsinore in Southern California, we reconstruct late Holocene (3800 calendar years B.P.) hydrological change using a twentieth-century calibrated, proxy methodology. We compared magnetic susceptibility from Lake Elsinore deep basin sediments, lake level from Lake Elsinore, and regional winter precipitation data over the twentieth century to calibrate the late Holocene lake sediment record. The comparison revealed a strong positive, first-order relationship between the three variables. As a working hypothesis, we suggest that periods of greater precipitation produce higher lake levels. Greater precipitation also increases the supply of detritus (i.e., magnetic-rich minerals) from the lake's surrounding drainage basin into the lake environment. As a result, magnetic susceptibility values increase during periods of high lake level. We apply this modern calibration to late Holocene sediments from the lake's littoral zone. As an independent verification of this hypothesis, we analyzed 18O(calcite), interpreted as a proxy for variations in the precipitation:evaporation ratio, which reflect first order hydrological variability. The results of this verification support our hypothesis that magnetic susceptibility records regional hydrological change as related to precipitation and lake level. Using both proxy data, we analyzed the past 3800 calendar years of hydrological variability. Our analyses indicate a long period of dry, less variable climate between 3800 and 2000 calendar years B.P. followed by a wet, more variable climate to the present. These results suggest that droughts of greater magnitude and duration than those observed in the modern record have occurred in the recent geological past. This conclusion presents insight to the potential impact of future droughts on the over-populated, water-poor region of Southern California.  相似文献   

17.
全新世中后期开封西郊黄泛沉积序列的孢粉记录   总被引:2,自引:1,他引:1  
历史时期以来,黄河在开封市附近多次泛滥形成了相对完整的沉积序列。选取开封市西郊25 m岩芯(ZKjm)为研究对象,通过孢粉分析,结合地层沉积旋回和历史文献资料,探讨了全新世中后期以来大洪水事件的孢粉记录。结果表明:黄泛地层中的孢粉含量及其组成很好地记录了大洪水事件,洪水沉积期的木本植物花粉含量高于其间断期,而人工禾本科花粉含量低于间断期。每个粒度旋回基本上都有与之对应的孢粉亚带,且其上下界限的吻合度较高,表明孢粉可作为划分沉积旋回的代用指标。岩芯孢粉亚带的数目(12个)多于粒度旋回数目(9个),孢粉组合特征可以识别出规模较小的洪水或者一次洪水事件出现的多个短期洪水间歇期所形成的沉积,孢粉指标划分沉积旋回的精度高于粒度指标。  相似文献   

18.
《自然地理学》2013,34(3):252-268
We examined a large, Late Pleistocene delta in northern Lower Michigan, formed by the Black River in Glacial Lake Algonquin. Today, this sandy, arcuate, wave-influenced delta stands several meters above the lake floor. The Black River transported mainly well-sorted, medium, and fine sands to the delta—at remarkably rapid rates. Our subsurface data, taken at 153 sites across the delta, show subtle and consistent trends in sediment texture across the delta surface. Although found in low amounts, gravel and very coarse sands are concentrated near the shoreline, presumably eroded by waves from the till and bedrock that crop out there. Sediments of very fine sand size (and finer) exist in higher concentrations near the eastern shore, sourced from eroded tills and also carried there on longshore currents. A clear sediment plume of medium and finer sands also traverses the delta SE to NW, which we interpret as evidence of sand transport by longshore currents flowing east to west, driven by easterly winds. High, perched spits on the head of the delta also suggest westerly longshore drift. These paleoclimate proxy data support previous interpretations of strong easterly winds here during the Late Pleistocene, probably in association with a glacial anticyclone.  相似文献   

19.
This paper seeks to arrive at a consistent interpretation of (1) the age model, (2) the grain size record, and (3) seismic reflection data from Lake Hovsgol (a.k.a Khubsugul or Hövsgöl), Mongolia, reported by Fedotov et al. (2007, earlier by Fedotov et al. 2002, 2004). In their most recent contribution, the grain size record of the KDP-01 drill core is interpreted as a climatic signal while little consideration is given to lake-level changes and hence to basin-wide changes in depositional setting evident from seismic profiles; also, a nearly linear age model is at odds with the seismic evidence for a major angular unconformity in the sediment strata. The lack of regional seismic stratigraphic analysis has thus led to an improbable interpretation of the Lake Hovsgol sediment grain size record and ultimately to an improbable scenario of Mongolian glaciation history. Using the available seismic profiles, here we show that the drill core penetrated several transgressive/regressive sedimentary sequences and a major angular unconformity. Therefore, the drilled sediment section cannot represent continuous sediment accumulation and the Brunhes age model across the unconformity cannot be nearly linear; the time interval representing a hiatus remains to be determined. The assumed nearly linear age/depth relationship in the upper 23 m above the angular unconformity is also an unlikely relationship, given the evidence of repeated changes in lake level, and hence in the depositional setting and sedimentation rates. We further propose a qualitative reference model for changes in the Lake Hovsgol depositional setting (presented as a step-by-step animation – see supplementary material) based on manually ‘backstripping and rebuilding’ the seismic pattern. We argue that this model provides a useful template of the likely sediment facies changes in the deep axial part of the Hovsgol basin: our crude model in fact captures the major depositional trends in the KDP-01 drill core section located some 10 km NW along the seismic line. We contend that changes in the depositional setting provide the first-order control on sediment grain size in the Hovsgol record. Our study provides important new constraints on the nature of sedimentary proxy records in Lake Hovsgol and on their interpretation as a record of Mongolian glaciation history.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号