首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
于2009 2010年对西藏34个湖泊表层水体进行采样和水质参数测量,测试不同湖泊水体主要离子浓度,分析其分布特征和对区域气候变化的响应.研究表明,不同湖泊水体的主要离子浓度及其水质参数存在差异,西藏大部分湖泊离子浓度高于全国甚至全球湖泊平均水平.湖泊的水化学类型主要为氯化物型,少部分是硫酸盐型.西藏湖泊受强烈蒸发作用的影响,水化学类型从东南到西北依次为碳酸盐型-硫酸钠型-硫酸钾型-氯化物型.对比1990s前的研究发现,大部分湖泊水体的主要离子浓度较上世纪有所降低,且部分湖泊水化学类型也发生了变化,该变化反映了过去几十年来西藏湖泊水化学对区域气候变化的响应.  相似文献   

2.
韩玉丽  卜红梅 《湖泊科学》2022,34(6):1968-1979
极端降水是影响水环境质量的重要气象因素之一,随着全球气候变暖,极端降水事件的频率和量级呈显著上升的趋势,对湖泊水化学和水环境产生了深刻的影响.白洋淀是华北地区重要的湖泊型湿地和生态功能区,为查明极端降水条件下白洋淀主淀区的水化学和水质特征,本研究利用Piper三线图、Gibbs图和多元统计方法阐明了白洋淀极端降雨后的水化学特征、氢氧稳定同位素特征和水质空间变化,揭示了极端降水条件对白洋淀主淀区水化学和水质的影响.结果表明:(1)在极端降水条件下,白洋淀主淀区湖水呈弱碱性,水化学类型主要为Ca-HCO3·SO4型,极端降水减弱了蒸发结晶作用和人类活动等因素对白洋淀主淀区湖水水化学组成的影响.极端降水是导致白洋淀主淀区pH、电导率和总溶解性固体发生大幅度变化的原因之一.(2)极端降水条件下白洋淀主淀区湖水的δ2H和δ18O值的范围分别为-60.86‰~-35.01‰和-8.84‰~-3.45‰,其值均与水深呈显著负相关.极端降水使得白洋淀主淀区湖水的氢、氧稳定同位素贫化,但对其空间分布的影响不大,湖水氢...  相似文献   

3.
土地利用结构与景观格局对鄱阳湖流域赣江水质的影响   总被引:4,自引:0,他引:4  
徐启渝  王鹏  王涛  舒旺  张华  齐述华 《湖泊科学》2020,32(4):1008-1019
于2015年1月和7月采集赣江干流及支流34个采样点水样,测定电导率、水化学离子、无机氮等水质指标.利用赣江流域2014年30 m分辨率的土地利用数据,以流域景观类型占比表征土地利用结构,景观指数表征景观格局;采用Pearson相关分析、Bioenv分析、Mantle检验与方差分解等方法分析流域土地利用结构与景观格局对赣江水质的影响.结果表明:上游Cl~-、Na~+浓度最高,中游电导率、Cl~-、Na~+、K~+、Ca~(2+)等水质指标最低,下游电导率、HCO_3~-、SO_4~(2-)、Mg~(2+)、Ca~(2+)、NO_3~--N等水质指标最高.居民建设用地是对水质影响最显著的单一土地利用类型.林地、水田与居民建设用地是对水质影响最显著的土地利用类型组合.平均最近邻体指数是对水质影响最显著的单一景观指数,斑块个数、斑块聚集度指数、平均最近邻体指数是对水质影响最显著的景观指数组合.枯水期土地利用结构和景观格局对水质的贡献率分别为41.1%和17.2%,景观格局对水质的贡献率(17.2%)均为和土地利用结构的交互作用,无独立贡献部分;丰水期二者对水质贡献率分别为51%、53%,交互作用部分为37%.以上结果表明,土地利用结构与景观格局都对赣江水质有较大影响,二者的交互作用在该影响中占有重要地位,且枯水期景观格局对水质的影响涵盖在与土地利用结构的交互作用中.  相似文献   

4.
基于对1972-1997年兰州五泉山水质变化情况的分析,研究了兰州地区环境污染尤其是大气污染对该泉点水质的影响。结果表明,环境因素对泉点的水化学动态可能造成很大的影响,在应用水地球化学观测资料进行地震预报时,应充分考虑环境污染问题。  相似文献   

5.
基于Matlab的断裂带温泉水地球化学特征及地震活动性研究   总被引:1,自引:0,他引:1  
基于Matlab开发出地下流体分析软件,对比分析了甘肃西秦岭北缘的武山、街子和清水温泉水化学组分特征;初步分析了温泉水水质类型、补给来源、水-岩平衡状态以及循环深度,并讨论了温泉水深循环对地震活动性的影响.研究表明温泉水均为大气降水成因,其水化特征受围岩的控制作用;清水温泉水的成熟度没有武山和街子温泉水高.地下水循环深度较浅的武山温泉和街子温泉水化类型属于Na-HCO3·SO4·Cl,所处断裂的地震活动频繁;地下水循环深度较深的清水温泉水化类型属于Na-SO4·Cl,所处断裂的地震活动性弱.  相似文献   

6.
格尔木河中下游-达布逊湖段水化学变化特征研究   总被引:4,自引:0,他引:4  
1998年8月对格尔木河-达布逊湖流域进行了系统考察,并对其地表水体取样分析后发现,河水水化学分布空间上从源头至湖中逐渐咸化,表现出明显的地貌分区性特征,且东河段水质异常咸化;时间上河水矿化度总体表现为逐年上升的趋势,湖水则相对稳定,作为流域农牧业发展的水源地和近几年格尔木市移民建设的重点地区,其地表水体水化学的时空异常变化应引起足够的重视。  相似文献   

7.
广西武鸣盆地岩溶泉口浮游生物群落对水环境变化的响应   总被引:1,自引:0,他引:1  
韦丽琼  郭芳  姜光辉 《湖泊科学》2022,34(3):777-790
近年来我国西南岩溶地区一些岩溶泉出现水生生态系统由草型向藻型转变的问题,但水化学监测却显示泉水水质依旧良好.岩溶泉的水质变化与水生生态系统退化不同步,故探寻岩溶泉水环境的变化以及浮游生物群落的响应,对全面掌握和客观评价泉水的健康状况具有重要意义.于2016年7月、2020年7月两个时期对广西武鸣盆地内4个岩溶泉进行了浮...  相似文献   

8.
华北强震水化学参量变化的模糊识别及方法评价   总被引:3,自引:1,他引:2  
李君英  唐仲兴 《地震》1999,19(1):71-80
利用模糊识别方法对1969 ̄1998年发生在华北地区的渤海,海城,唐山3次强震及其强余震以及大同,包头西,张北3次中强震之前,该地区50多口观测井的水氡和部分井孔的He,H2,CO2,Hg等水化学组分8万多个观测数据进行了全面处理,取得了华北地区强震前水氡,气体和水质组分前兆变化的时空分布特征,并提出了该地区强震和中强地震水化学参量中期和短期的异常指标,最后对模糊识别方法的地震预报效能提出评价。  相似文献   

9.
采集夏县中心地震台温泉水及周边水点样品进行水化学组分特征分析。利用矩形图、Na-K-Mg三角图等方法,初步分析温泉水的水质类型、水-岩平衡状态、热储温度以及循环深度等,并结合氢氧同位素组成特征,初步分析温泉水补给来源。研究表明,夏县中心地震台温泉水化类型属于Na-Cl·SO4型,水-岩反应属于部分成熟水,热储温度为148.8℃,循环深度为3.91 km,补给源主要为大气降水,温泉为断裂型温泉。以上结果可为该台流体异常分析提供基础研究资料,为夏县地区水化研究奠定基础。  相似文献   

10.
祁连山断裂带中东段地下水地球化学特征研究   总被引:7,自引:2,他引:5       下载免费PDF全文
祁连山断裂带是中国西部地震活动最强烈的地区之一。本文应用Aquachem5.1对该断裂带中东段10口井水进行了水化学分析;同时利用Phreeqc软件对地下水化学组分和饱指数SI值进行了模拟计算;并结合氢氧和氦同位素组成特征初步分析了该断裂带地下水成因、水质类型、循环速度及循环深度。研究表明祁连山断裂中东段地下水均为大气成因,总体上体现为循环深度小、滞留时间短、水-岩反应程度较弱等特点,其化学活动性在空间上具有西弱东强分布特征。这一结论为今后进一步研究地下流体地震前兆异常提供了依据。  相似文献   

11.
阳澄湖若干水质资料的分析与评价   总被引:12,自引:0,他引:12  
潘红玺  吉磊 《湖泊科学》1997,9(2):187-191
根据1994年5月于阳澄湖湖区7个采样点水质分析结果,表明湖水中矿化度较高,硬度较大,主要离子以HCO3^-,Na^+为主,分别占阴阳离子摩尔总数的57.61%、63.9%。湖水水型西湖、中湖为重碳酸盐钠组Ⅰ型,东湖为重碳酸盐钠组Ⅱ型水。湖水中N、P营养元素丰富,NH3-N、NO2-N指标与70年代相比明显增高,表明水体已曹室不程度地轻污染。  相似文献   

12.
Zeyong Gao  Fujun Niu  Zhanju Lin 《水文研究》2020,34(26):5659-5673
Thermokarst lakes play a key role in the hydrological and biogeochemical cycles of permafrost regions. Current knowledge regarding the changes caused by permafrost degradation to the hydrochemistry of lakes in the Qinghai-Tibet Plateau (QTP) is limited. To address this gap, a systematic investigation of thermokarst lake water, suprapermafrost water, ground ice, and precipitation was conducted in the hinterland of the QTP. The thermokarst lake water in the QTP was identified to be of the Na-HCO3-Cl type. The mean concentrations of HCO3 and Na+ were 281.8 mg L−1 (146.0–546.2 mg L−1) and 73.3 mg L−1 (9.2–345.8 mg L−1), respectively. The concentrations of Li+, NH4+, K+, F, NO2, and NO3 were relatively low. Freeze-out fractionation concentrated the dissolved solids within the lake water during winter, which was deeply deepened on lake depth and lake ice thickness. Owing to solute enrichment, the ground ice was characterized by high salinity. Conversely, repeated replenishment via precipitation led to lower solute concentrations in the ground ice near the permafrost table compared to that within the permafrost. Although lower solute concentration existed in precipitation, the soil leaching and saline ground ice melting processes enhanced the solute load in suprapermafrost water, which is considered an important water and solute resource in thermokarst lakes. The influencing mechanism of permafrost degradation on thermokarst lake hydrochemistry is presumably linked to: (1) the liberation of soluble materials sequestered in ground ice; (2) the increase of solutes in suprapermafrost water and soil pore water; and (3) the changes in lake morphometry. These results have major implications on the understanding of the effects of ground ice melting on ecosystem functions, biogeochemical processes, and energy balance in a rapidly changing climate.  相似文献   

13.
Kawah Putih is a summit crater of Patuha volcano, West Java, Indonesia, which contains a shallow, 300 m-wide lake with strongly mineralized acid–sulfate–chloride water. The lake water has a temperature of 26–34°C, pH=<0.5–1.3, Stot=2500–4600 ppm and Cl=5300–12 600 ppm, and floating sulfur globules with sulfide inclusions are common. Sulfur oxyanion concentrations are unusually high, with S4O62−+S5O62−+S6O62−=2400 – 4200 ppm. Subaerial fumaroles (<93°C) on the lake shore have low molar SO2/H2S ratios (<2), which is a favorable condition to produce the observed distribution of sulfur oxyanion species. Sulfur isotope data of dissolved sulfate and native sulfur show a significant 34S fractionation (ΔSO4–Se of 20‰), probably the result of SO2 disproportionation in or below the lake. The lake waters show strong enrichments in 18O and D relative to local meteoric waters, a result of the combined effects of mixing between isotopically heavy fluids of deep origin and meteoric water, and evaporation-induced fractionation at the lake surface. The stable-isotope systematics combined with energy-balance considerations support very rapid fluid cycling through the lake system. Lake levels and element concentrations show strong seasonal fluctuations, indicative of a short water residence time in the lake as well.Thermodynamic modeling of the lake fluids indicates that the lake water is saturated with silica phases, barite, pyrite and various Pb, Sb, Cu, As, Bi-bearing sulfides when sulfur saturation is assumed. Precipitating phases predicted by the model calculations are consistent with the bulk chemistry of the sulfur-rich bottom sediments and their identified mineral phases. Much of the lake water chemistry can be explained by congruent rock dissolution in combination with preferential enrichments from entering fumarolic gases or brines and element removal by precipitating mineral phases, as indicated by a comparison of the fluids, volcanic rocks and lake bed sediment.Flank springs on the mountain at different elevations vary in composition, and are consistent with local rock dissolution as a dominant factor and pH-dependent element mobility. Discharges of warm sulfate- and chloride-rich water at the highest elevation and a near-neutral spring at lower level may contain a small contribution of crater-lake water. The acid fluid-induced processes at Patuha have led to the accumulation of elements that are commonly associated with volcano-hosted epithermal ore deposits. The dispersal of heavy metals and other potentially toxic elements from the volcano via the local drainage system is a matter of serious environmental concern.  相似文献   

14.
Lake Baringo, a freshwater lake in the central Kenya Rift Valley, is fed by perennial and ephemeral rivers, direct rainfall, and hot springs on Ol Kokwe Island near the centre of the lake. The lake has no surface outlet, but despite high evaporation rates it maintains dilute waters by subsurface seepage through permeable sediments and faulted lavas. New geochemical analyses (major ions, trace elements) of the river, lake, and hot spring waters and the suspended sediments have been made to determine the main controls of lake water quality. The results show that evaporative concentration and the binary mixing between two end members (rivers and thermal waters) can explain the hydrochemistry of the lake waters. Two zones are recognized from water composition. The southern part of the lake near sites of perennial river inflow is weakly influenced by evaporation, has low total dissolved species (TDS), and has a seasonally variable load of mainly detrital suspended sediments. In contrast, waters of the northern part of the lake show evidence for strong evaporation (TDS of up to eight times inflow). Authigenic clay minerals and calcite may be precipitating from those more concentrated fluids. The subaerial hot‐spring waters have a distinctive chemistry and are enriched in some elements that are also present in the lake water. Comparison of the chemical composition of the inflowing surface waters and lake water shows (1) an enrichment of some species (HCO3?, Cl, SO42?, F, Na, B, V, Cr, As, Mo, Ba and U) in the lake, (2) a depletion in SiO2 in the lake, and (3) a possible hydrothermal origin for most F. The rare earth element distribution and the F/Cl and Na/Cl ratios give valuable information on the rate of mixing of the river and hydrothermal fluids in the lake water. Calculations imply that thermal fluids may be seeping upward locally into the lake through grid‐faulted lavas, particularly south of Ol Kokwe Island. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Samples from Kawah Ijen crater lake, spring and fumarole discharges were collected between 1990 and 1996 for chemical and isotopic analysis. An extremely low pH (<0.3) lake contains SO4–Cl waters produced during absorption of magmatic volatiles into shallow ground water. The acidic waters dissolve the rock isochemically to produce “immature” solutions. The strong D and 18O enrichment of the lake is mainly due to enhanced evaporation at elevated temperature, but involvement of a magmatic component with heavy isotopic ratios also modifies the lake D and 18O content. The large ΔSO4–S0 (23.8–26.4‰) measured in the lake suggest that dissolved SO4 forms during disproportionation of magmatic SO2 in the hydrothermal conduit at temperatures of 250280°C. The lake δ18OSO4 and δ18OH2O values may reflect equilibration during subsurface circulation of the water at temperatures near 150°C. Significant variations in the lake's bulk composition from 1990 to 1996 were not detected. However, we interpret a change in the distribution and concentration of polythionate species in 1996 as a result of increased SO2-rich gas input to the lake system.Thermal springs at Kawah Ijen consist of acidic SO4–Cl waters on the lakeshore and neutral pH HCO3–SO4–Cl–Na waters in Blawan village, 17 km from the crater. The cation contents of these discharges are diluted compared to the crater lake but still do not represent equilibrium with the rock. The SO4/Cl ratios and water and sulfur isotopic compositions support the idea that these springs are mixtures of summit acidic SO4–Cl water and ground water.The lakeshore fumarole discharges (T=170245°C) have both a magmatic and a hydrothermal component and are supersaturated with respect to elemental sulfur. The apparent equilibrium temperature of the gas is 260°C. The proportions of the oxidized, SO2-dominated magmatic vapor and of the reduced, H2S-dominated hydrothermal vapor in the fumaroles varied between 1979 and 1996. This may be the result of interaction of SO2-bearing magmatic vapors with the summit acidic hydrothermal reservoir. This idea is supported by the lower H2S/SO2 ratio deduced for the gas producing the SO4–Cl reservoir feeding the lake compared with that observed in the subaerial gas discharges. The condensing gas may have equilibrated in a liquid–vapor zone at about 350°C.Elemental sulfur occurs in the crater lake environment as banded sediments exposed on the lakeshore and as a subaqueous molten body on the crater floor. The sediments were precipitated in the past during inorganic oxidation of H2S in the lake water. This process was not continuous, but was interrupted by periods of massive silica (poorly crystallized) precipitation, similar to the present-day lake conditions. We suggest that the factor controlling the type of deposition is related to whether H2S- or silica-rich volcanic discharges enter the lake. This could depend on the efficiency with which the lake water circulates in the hydrothermal cell beneath the crater. Quenched liquid sulfur products show δ34S values similar to those found in the banded deposits, suggesting that the subaqueous molten body simply consists of melted sediments previously accumulated at the lake bottom.  相似文献   

16.
An enzyme assay was developed for studies on peroxidase activities in humic lake water. 3,4-Dimethoxybenzyl alcohol (veratryl alcohol, VeraOH) was used as tracer substrate, and peroxidase (EC 1.11.1.7) activity was measured by high-performance liquid chromatography. The chemical stability of VeraOH and its application as peroxidase substrate was tested under light and dark conditions, different hydrogen peroxide (H2O2) concentrations and humic matter contents. VeraOH was stable under low UV radiation at in situ conditions in lake water (<0.010...0.25 kJ m–2 d–1), laboratory conditions (<0.05...0.30 kJ m–2 d–1), and low (1...100 μM) H2O2 concentrations. However, peroxides oxidized VeraOH above 1...10 mM H2O2 concentration in sterile Millipore-Q and humic lake water. Dark incubations showed little VeraOH oxidation products. The developed peroxidase assay was tested in the growth medium of Phanerochaete chrysosporium and a bacteria isolate (P.M.D. 20.4.3.1) from mesohumic lake Pääjärvi. Peroxidase activities were also measured in natural microbial communities under standard laboratory and under in situ conditions in humic lake water. Incubation times of about 5 to 12 days were usually needed to record significant (P < 0.05) peroxidase activities, in lake waters. In situ peroxidase activities varied in pelagial surface water (0...0.5 m) on a seasonal scale between 74 nmol L–1 h–1 and 273 nmol L–1 (mean: 176 nmol L–1 h–1) and within the water column between 110 nmol L–1 h–1 and 800 nmol L–1 h–1 (mean: 500 nmol L–1 h–1) in polyhumic lake Mekkojärvi.  相似文献   

17.
Dissolved inorganic carbon isotope (δ13CDIC) is an important tool to reveal the carbon cycle in lake systems. However, there are only few studies focusing on the spatial variation of δ13CDIC of closed lakes. Here we analyze the characteristics of δ13CDIC of 24 sampled lakes (mainly closed lakes) across the Qiangtang Plateau (QTP) and identify the driving factors for its spatial variation. The δ13CDIC value of these observed lakes varies in the range of ? 15·0 to 3·2‰, with an average value of ? 1·2‰. The δ13CDIC value of closed lakes is close to the atmospheric isotopic equilibrium value, much higher than that in rivers and freshwater lakes reported before. The high δ13CDIC value of closed lakes is mainly attributed to the significant contribution of carbonate weathering in the catchment and the evasion of dissolved CO2 induced by the strong evaporation of lake water. The δ13CDIC value of closed lakes has a logarithmic correlation with water chemistry (TDS, DIC and pCO2), also suggesting that the evapo‐concentration of lake water can influence the δ13CDIC value. The δ13CDIC value shows two opposite logarithmic correlations with lake size depending on the δ13CDIC range. This study suggests that the δ13C in carbonates in lacustrine sediments can be taken as an indicator of lake volume variation in closed lakes on QTP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
为揭示太湖流域降雨和湖水酸根阴离子长期变化特征及环境意义,通过历史数据收集和采样分析,对太湖流域降雨和湖水中的SO42-、NO3-变化特征和来源进行了研究.结果表明:自1990s以来太湖流域降雨中SO42-呈显著下降趋势,年平均下降率为0.28 mg/(L·a);NO3-浓度却呈显著上升趋势,年平均增长率为0.05 mg/(L·a),降雨中氮污染呈现加重的趋势.与之相反,湖水中SO42-呈显著上升趋势,年平均增长率为1.24 mg/(L·a);NO3-浓度却呈显著下降趋势,年平均下降率为0.02 mg/(L·a).30年以来,太湖水体SO42-/NO3-比值不断升高,远高于降水SO42-/NO3-比值.研究认为:流域SO2排放引起的酸沉降是湖水SO42-浓度增长的最重要原因,但氮氧化物排放并未引起湖水NO3-浓度升高,说明太湖流域对大气沉降的氮氧化物有滞留作用,而太湖水体是流域大气沉降硫酸盐的重要汇.综合治理太湖流域酸性物质排放对防止太湖水体酸化和治理富营养化都具有重要意义.  相似文献   

19.
The fundamental assumption of 210Pb sediment dating is the stable flux of 210Pbex, which was derived from atmosphere and then transferred into sediments via lake water. When the sedimentation rate is relatively constant, the 210Pbex activity in sediments will be exponentially reduced with sedimentation age. 210Pbex in lake water is incorporated into sediments mainly via organic particulates. If the sedimentation flux of organic matter in lake water is suddenly increased, 210Pbex will be significantly deposited and then transferred into sediments. On the one hand such sudden purification effect is obviously unfit for the fundamental assumption of 210Pb dating; on the other hand, the sudden enhancement of 210Pbex flux would be indicative of the conspicuous variation of primary productivity of lake water. This problem will be discussed in accordance with the variation trend of 210Pbex in the vertical profile of recent sediments of Lake Chenghai, Yunnan Province. The sediment core was collected from the deep-water area of Lake Chenghai in June 1997. The vertical profile of 137Cs activity is characterized by a tree-peak pattern. This profile gave reliable ages, and also showed the stability of sediment accumulation in the recent ten years. The vertical profile of 210Pbex activity displays a specific distribution of peaks, and is similar to the vertical profile of Corg. This phenomenon seems to be related to the mechanism of constraining the transfer of 210Pbex into lake sediments. The average atomic ratios of Horg/Corg and Corg/Norg in Lake Chenghai sediments are 5.51 and 7.04, respectively, indicating that the organic matter was predominantly derived from the remains of endogenic algae. In terms of the three-stage evolutionary characteristics of organic matter in sediments, i.e., “deposition-de-composition-accumulation”, the sedimentation fluxes (F(Corg)) of organic carbon (Corg) since 1970 were calculated by modeling. The sedimentation fluxes of 210Pbex (F(210Pbex)) in different years display good synchronous relations with the sedimentation flux of organic carbon (F(Corg)), especially in the years of 1972–1974 and 1986–1989. The variation of F(Corg) led to the variation of F(210Pbex); the variation of F(210Pbex) reflects, to some extent, the historical variation of lake productivity.  相似文献   

20.
Mögliche Massnahmen zur Restaurierung des Sempachersees   总被引:1,自引:1,他引:1  
Since 1954 average orthophosphate and total phosphorus concentrations have increased twenty and eightfold respectively in Lake Sempach. It is demonstrated that the lake is not in steady state with its phosphorus loading and that the net deposition rate of phosphorus is not linearly related to the phosphorus content of the lake. This implies that linear steady state one-box models are unsuitable to describe the phosphorus balance of this lake. Applying a nonlinear dynamic lake model we predict that the defined water quality goals ([P] ⩽30 mg m−3, [O2 ⩾4 mg m−3]) can only be achieved within the next 15 years if the external phosphorus loading is reduced by at least 50% and simultaneously lake-internal measures, such as hypolimnion areation or hypolimnion siphoning are carried into effect.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号