首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three groups of ultramafix xenoliths were collected from alkali basalt in the island of Hierro, Canary Islands: (1) Cr-diopside series (spinel harzbugite, lherzolite, dunite); (2) Al-augite series xenoliths (spinel wherlite, olivine clinopyroxenite, dunite, olivine websterite); (3) gabbroic xenoliths. The main textures are granoblastic, porphyroclastic and granular, but poikilitic textures, and symplectitic intergrowths of clinopyroxene (cpx) + spinel (sp)±orthopyroxene (opx)±olivine (ol) (in rare cases cpx+opx), occur locally. Textural relations and large inter- and intra-sample mineral chemical variations testify to a complex history of evolution of the mantle source region, involving repeated heating, partial melting, and enrichment associated with infiltration by basaltic melts. The oldest assemblage in the ultramafic xenoliths (porphyroclasts of ol+opx±sp±cpx) represents depleted abyssal mantle formed within the stability field of spinel lherzolite. The neoblast assemblage [ol+cpx+ sp±opx±plagioclase (plag)±ilmenite (il)±phlogopite (phlog)] reflect enrichment in CaO+Al2O3+Na2O+ FeO±TiO2±K2O±H2O through crystal/liquid separation processes and metasomatism. The Al-augite-series xenoliths represent parts of the mantle where magma infiltration was much more extensive than in the source region of the Cr-diopside series rocks. Geothermometry indicates temperature fluctuations between about 900–1000 and 1200°C. Between each heating event the mantle appears to have readjusted to regional geothermal gradient passing 950°C at about 12 kbar. The gabbroic xenoliths represent low-pressure cumulates.  相似文献   

2.
The stability and partial melting of synthetic pargasite in the presence of enstatitic orthopyroxene (opx), forsterite, diopsidic clinopyroxene (cpx), plagioclase (An50), and water has been studied in the range of 0.4–6.0 kb and 750–1000°C in the system Na2O-CaO-MgO-Al2O3-SiO2-H2O with a fixed bulk composition of pargasite+5 opx. The addition of orthopyroxene effectively reduces the stability field of pargasite by approximately 200°C at 1 kb. The invariant point involving pargasite coexisting with water-saturated liquid and anhydrous phase shifts from about 0.85 kb and 1025°C to 2.5±0.5 kb and 925±25°C with the addition of opx. Based on the solidus mineral assemblage and direct chemical analysis of quenched glass, the vapor-saturated liquid has a composition close to that of intermediate plagioclase. A layered silicate, interpreted to be Na-phlogopite, has an upper-thermal stability that nearly equals that of pargasite in the field of partial melting and coexists with liquid, pargasite, cpx, and forsterite at 6 kb, 1000°C. These results support the hypothesis that mantle metasomatism could involve formation of pargasitic amphibole from a silicate melt at depths as shallow as 8–10 km.  相似文献   

3.
Clinopyroxenes (cpx) in abyssal and ophiolitic peridotites are commonly analyzed for lithophile trace element abundances in order to estimate degrees of melting and porosity conditions during melt extraction, assuming that these data reflect near-solidus conditions. During cooling, however, cpxs always exsolve into parallel lamellae of low-Ca enstatite and high-Ca diopside. This may potentially lead to redistribution of the initial trace element budget. Since orthopyroxene (opx) cannot significantly host most incompatible trace elements, exsolution will lead to an enrichment in the cpx lamellae. In order to address a possibly exsolution-controlled partitioning between cpx and opx, we have obtained major and trace element mineral compositions on 14 plagioclase-free ocean floor mantle rocks. They cover the entire abyssal peridotite compositional spectrum from very fertile to highly depleted compositions. The mean volume proportion of opx lamellae in cpx porphyroclasts lies around 15% of the original cpx. For the light to middle rare earth elements, the enrichment in the measured cpx exsolution is exclusively controlled by these phase proportions. Relative to these highly incompatible trace elements, solely Ti and Yb partition significantly into opx. Lamellar interpyroxene partition coefficients, estimated from NanoSIMS analyses, are around three times as high as the ones for near-solidus bulk pyroxene. The equilibration temperatures for the exsolution lamella are slightly higher than 800°C. The bulk cpx can be reconstructed using the lamellar proportions and their relative partitioning. The implication of such a reconstruction is that the cpx rare earth element patterns shift almost in parallel to lower values. These shifts, however, do not affect mantle melting models proposed thus far for mid-ocean ridges. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

4.
Coexisting feldspars from across 2,000 km2 of the granulite facies Oaxacan Complex, southern Mexico exhibit variable amounts of solid solution from nearly binary (Ab-An and Ab-Or) to substantially ternary (Ab-An-Or). Reintegrated analyses of 21 coarsely exsolved perthite (AF)-plagioclase (PL) pairs yield AF=Or30–63 Ab30–56An2–15 and PL=Or1–2Ab70–84An11–28. These data have been used to test existing two feldspar geothermometers for this extended composition range.For all compositions, temperature estimates show relatively little spread in value (660° to 795° C, 7 kbar) using the Haselton et al. (1983) calibration (HHHR). These temperatures are in fair agreement with estimates of 750±40° C for feldspar pairs with nearly binary compositions using the Stormer (1975) thermometer (STO). However, STO temperatures increase significantly (to 990° C) with increasing ternary solid solution in AF, suggesting that thermometers derived for binary systems are inaccurate for ternary compositions. Isotherms drawn from HHHR which take into account variable anorthite solution in alkali feldspar show that estimated temperature decreased by 50–100° C for each 5 mole percent anorthite in alkali feldspar.Experimentally determined solvus relations (Seck 1971) require feldspars with significant ternary solid solution to have crystallized or to have equilibrated at higher temperature than feldspars with more binary compositions. However, petrographic and field relations of ternary and binary feldspars in the Oaxacan Complex suggest they were all equilibrated at similar metamorphic pressures and temperatures and do not support a model where ternary feldspars have preserved higher premetamorphic temperatures. The composition of coexisting feldspars from other Precambrian granulite-facies terranes are also inconsistent with Seck's (1971) results. Hence, thermometers which fit Seck's solvus relations may not yield accurate temperatures in high grade metamorphic terranes. Parallel tie-lines for ternary and binary feldspars in the Oaxacan Complex and the consistency of inferred temperatures (HHHR) for many granulite terranes suggest that estimation of temperature using tie-line slopes rather than solvus width may yield more accurate results for these samples.Peak metamorphic conditions in the Oaxacan Complex are inferred to have been 730±50° C, 7±1 kbar. Pressure estimates from four garnet-plagioclase barometers show good agreement. Results of feldspar thermometry are consistent with diopside-forsterite equilibria in marbles which restrict T=720–765° C at P=7 kbar.  相似文献   

5.
The anhydrous melting behaviour of two synthetic peridotite compositions has been studied experimentally at temperatures ranging from near the solidus to about 200° C above the solidus within the pressure range 0–15 kb. The peridotite compositions studied are equivalent to Hawaiian pyrolite and a more depleted spinel lherzolite (Tinaquillo peridotite) and in both cases the experimental studies used peridotite –40% olivine compositions. Equilibrium melting results in progressive elimination of phases with increasing temperature. Four main melting fields are recognized; from the solidus these are: olivine (ol)+orthopyroxene (opx)+clinopyroxene (cpx)+Al-rich phase (plagioclase at low pressure, spinel at moderate pressure, garnet at high pressure)+liquid (L); ol+opx+cpx+Cr-spinel+L; ol+opx+Cr-spinel +L: ol±Cr-spinel+L. Microprobe analyses of the residual phases show progressive changes to more refractory compositions with increasing proportion of coexisting melt i.e. increasing Mg/(Mg+Fe) and Cr/(Cr+Al) ratios, decreasing Al2O3, CaO in pyroxene.The degree of melting, established by modal analysis, increases rapidly immediately above the solidus (up to 10% melting occurs within 25°–30° C of the solidus), and then increases in roughly linear form with increasing temperature.Equilibrium melt compositions have been calculated by mass balance using the compositions and proportions of residual phases to overcome the problems of iron loss and quench modification of the glass. Compositions from the melting of pyrolite within the spinel peridotite field (i.e. 15 kb) range from alkali olivine basalt (<15% melting) through olivine tholeiite (20–30% melting) and picrite to komatiite (40–60% melting). Melting in the plagioclase peridotite field produces magnesian quartz tholeiite and olivine-poor tholeiite and, at higher degrees of melting (30–40%), basaltic or pyroxenitic komatiite. Melts from Tinaquillo lherzolite are more silica saturated than those from pyrolite for similar degrees of partial melting, and range from olivine tholeiite through tholeiitic picrite to komatiite for melting in the spinel peridotite field.The equilibrium melts are compared with inferred primary magma compositions and integrated with previous melting studies on basalts. The data obtained here and complementary basalt melting studies do not support models of formation of oceanic crust in which the parental magmas of common mid-ocean ridge basalts (MORB) are attributed to segregation from source peridotite at shallow depths ( 25 km) to leave residual harzburgite. Liquids segregating from peridotite at these depths are more silica-rich than common MORB.  相似文献   

6.
Petrographic and microprobe investigations of calc-alkaline (CA) rocks from the High Cascade Range (i.e., Mt. St. Helens, Mt. Jefferson, Crater Lake and Mt. Shasta) of western North America show that crystal clots represent primary igneous phase assemblages and are not products of amphibole reactions with melt. For each eruptive complex, crystal clots display diverse modal proportions even within a single eruptive unit. Nevertheless, in all cases the crystal-clot minerals are also represented in the rock as phenocrysts or microphenocrysts. Basalts contain clots of ol+plag+mgt, ol+mgt, cpx+ plag+mgt, cpx+mgt and plag+mgt; andesites, clots of cpx+mgt, opx+mgt, cpx+opx+plag+mgt, cpx+plag+mgt, opx+plag+mgt and plag±mgt; and dacites, clots of opx+mgt, cpx+opx+plag+ mgt, opx+plag+mgt, amph+plag+mgt±ilm, amph+mgt±ilm and plag±mgt. The bulk compositions of most of these clot assemblages could not have been derived from amphibole percursors. Although some amphiboles in dacitic rocks display a breakdown reaction of amph=plag+cpx+opx +mag, these mineral clusters, unlike those of clots, typically have a relict amphibole crystal outline and a fine-grained metamorphic texture. Plagioclase grains in the mineral clusters lack oscillatory zoning which is typical of crystal clot plagioclase grains. The euhedral to subhedral shapes of most clot minerals and the oscillatory zoning present in most clot plagioclase grains are not likely to have formed from the breakdown of amphibole. Crystal clots are also observed in Hawaiian and ocean floor basalts, although amphibole fractionation has not been proposed for those lavas. Magnetite fractionation may be the controlling process limiting iron enrichment in CA magmas rather than amphibole fractionation. Textural evidence indicates that magnetite is an early-forming phase in CA magmas. V, which is concentrated in magnetite, shows a strong decrease with increasing silica in many CA rocks, supporting a magnetite fractionation model.Hawaii Institute of Geophysics Contrib. No. 969  相似文献   

7.
Quaternary alkali olivine basalts and nephelinites from the Hoggar area (Southern Algeria) contain numerous lherzolite inclusions. The investigated nodules have been classified into three textural categories: coarse, porphyroclastic and granuloblastic. Microprobe analyses have been carried out on the coexisting phases (olivine, clinopyroxene, orthopyroxene, spinel, pargasite, Al rich glass) from 10 selected samples, with a special attention to pyroxene porphyroclasts which are zoned in Al and Cr. Most of the porphyroclastic xenoliths contain secondary pargasite (or its breakdown products) which is thought to reflect a metasomatic event in mantle conditions. Equilibrium temperatures and pressures have been calculated for the three groups, using the single-pyroxene method: the coarse samples have been equilibrated at higher pressures (20–25 kb) and temperatures (1,000° C–1,100° C) than the granuloblastic samples (about 10 kb and 900° C); with regards to the porphyroclastic xenoliths, the estimated T and P have been related to two stages of crystallization (corresponding to porphyroclasts and neoblasts). Relationships between phase compositions, rock-textures and metasomatism are briefly discussed.  相似文献   

8.
Melting experiments on a mantle-derived nodule assemblage consisting of clinopyroxene, phlogopite and minor titanomagnetite, sphene and apatite have been done at 20 and 30 kbar between 1,175 and 1,300° C. The nodule composition was selected on the basis of modal and chemical analyses of 84 mantle derived nodules with metasomatic textures from the Katwe-Kikorongo and Bunyaruguru volcanic fields of south-west Uganda. At 30 kbar, 1,225 and 1,250° C, representing 20–30% partial melting, the compositions of glasses compare favourably to those of the average composition of 26 high potassic mafic lavas from the same region. Glasses produced by sufficiently low degrees of partial melting at 20 kbar could not be analysed. Glass compositions obtained for 20–30% melting at 30 kbar have high K2O (3.07–5.05 wt.%), low SiO2 (35.0–39.2 wt.%), high K/K + Na (0.54–0.71), K + Na/Al (0.99–1.08) and Mg/ Mg + FeT of 0.59–0.62. These results support the suggestion of Lloyd and Bailey (1975) that the nodules represent the source material for the high K-rich lavas of south-west Uganda. If this conclusion is correct it implies that anomalous mantle source of phlogopite clinopyroxenite composition could produced the Ugandan lavas by relatively higher degrees of partial melting than that normally considered for highly alkaline mafic magmas derived from a pyrolitic mantle source. Higher degrees of melting are considered likely from such a different source region, rich in alkalis, water and radioactive elements. Steeper geotherms and increased fluxing of sub-rift mantle by degassing would also produce higher degrees of partial melting.  相似文献   

9.
Li contents and its isotopes of minerals in mantle peridotite xenoliths from late Cretaceous mafic dikes, analyzed in situ by Cameca IMS-1280, reveal the existence of melt/rock interaction in remains of refertilized Archean lithospheric mantle in Qingdao, Jiaodong Peninsula, North China Craton. Two groups of peridotites exist, i.e., low-Mg# lherzolite and high-Mg# harzburgites. The low-Mg# lherzolite has a relatively homogeneous Li concentration (ol: 2.01–2.11 ppm; opx: 1.77–1.88 ppm; cpx: 1.75–1.93 ppm) and Li isotopic composition (δ7Li in ol: 4.2–7.6‰; in opx: 6.0–8.3‰; in cpx: 5.3–8.4‰). The similarity in δ7Li value to the fresh MORB provides further evidence for the argument that the low-Mg# lherzolite could be the fragment of the newly accreted lithospheric mantle. The high-Mg# harzburgites have heterogeneous Li abundances (ol: 0.83–2.09 ppm; opx: 0.92–1.94 ppm; cpx: 1.12–4.89 ppm) and Li isotopic compositions (δ7Li in ol: −0.5 to +11.5‰; in opx: −6.2 to +11.1‰; in cpx: −34.3 to +10.1‰), showing strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The cores of most minerals in these high-Mg# harzburgites have relatively homogeneous δ7Li values, which are higher than those of fresh MORB, but similar to those previously reported for arc lavas. These harzburgites have enriched trace elemental and Sr–Nd isotopic compositions. These observations indicate that in the early Mesozoic the lithospheric mantle beneath the southeastern North China Craton was similar to that in arc settings, which is metasomatized by subducted crustal materials. Extremely low δ7Li preserved in cpxs requires diffusive fractionation of Li isotopes from later-stage melt into the minerals. Thus, the Li data provide further evidence that the Archean refractory lithospheric mantle represented by the high-Mg# harzburgites was refertilized through melt/rock interaction and transformed to the Mesozoic less refractory and incompatible element and Sr–Nd isotopes enriched lithospheric mantle.  相似文献   

10.
Electron microprobe analyses sensitive to 20ppmw (2σ) were made for Na, P, K and Ti in garnet, pyroxenes and olivine from peridotite and eclogite xenoliths from African kimberlites and volcanic rocks in Tanzania. Average concentrations (ppmw) in peridotite (mostly garnet lherzolite) are: Na2O gt 340 ol 90 opx 1070 cpx 2.1 (wt.%); P2O5 gt 460 ol 130 opx 50 cpx 350; K2O gt <20 ol <20 opx 30 cpx 170; TiO2 gt 1470 ol 130 opx 480 cpx 1630. For eclogites and a cpx megacryst with gt inclusions: Na2O gt 610 cpx 4.3 (wt.%); P2O5 gt 530 cpx 300; K2O gt <20 cpx 370; TiO2 gt 1990 cpx 1980.In garnet, Na can be explained by coupled substitution with P and Ti, and there is no need to invoke six-coordinated silicon. The Na distribution between garnet and clinopyroxene correlates with the Fe/Mg distribution for both eclogites and peridotites, and for the peridotites correlates with estimates of pressure and temperature from pyroxene composition. When calibrated experimentally, the Na distribution may be a useful indicator of physical conditions at depths for which the Fe/Mg distribution is insensitive; furthermore the Na distribution may be less sensitive to oxidation state.  相似文献   

11.
Ion probe investigations on mineral phases forming the Al-Di pyroxenites from the Zabargad peridotite body indicate that porphyroclastic pyroxenes in composite mafic layers record an unusual HREE, Zr, Sc enrichment not registered by pyroxenes in spinel websterites. Orthopyroxene in the opx+sp clusters forming the inner, cpx-free zone of layered pyroxenites shows strongly fractionated REE patterns (HREEN/LREEN>1000; Yb>100xch) and very high Zr, Sc and Y abundances (up to 30,672 and 60ppm, respectively). In the outer, cpx-rich zone porphyroclastic clinopyroxene is strongly HREE enriched (HREEN/LREEN29; Yb 269xch) and displays very high Sc and Zr abundances (up to 819 and 164 ppm, respectively). It is suggested that the unusual trace element abundances are inherited from a precursor garnet. Composite pyroxenite layers are interpreted as former garnet clinopyroxenites characterized by gnt/cpx modal zoning. The sp+opx(cpx-free) assemblage in the inner part is a product of the break-down reaction of garnet upon decompression, with Ca of the original garnet completely entering the enstatite solid solution. The temperature at which the breakdown reaction occurred is estimated to be higher than 1000°C (P in the range 20–30 kbar). In the outer part, decompression caused the garnet to form a sp+opx assemblage; however, the grossularite component participated in the formation of new clinopyroxene which reacted with the clinopyroxene present in the original mode before the decompression reaction, thus forming a cpx2+sp+opx assemblage. As a result of garnet breakdown, pyroxenes have peculiar HFSE anomalies. Progressive upwelling during the Red Sea rifting produced incomplete reaction under pl-facies conditions. The geochemical signatures of precursor garnet in pyroxenes were partially crased during the recrystallization from granular spincl-bearing to granoblastic plagioclase-bearing assemblages, being preserved only in a few porphyroclast relies. The finding of pyroxenes with trace element characteristics of precursor garnet has important geodynamic and geochemical implications. Al-Di pyroxenite layers had a long history within the mantle, before the continental lithosphere rifting and thinning took place in the region. It is suggested that Al-Di pyroxenites were formed by deep-seated tholeiitic magmatism unrelated to the Red Sea evolution, thus representing the earliest event in the Zabargad upper mantle. Garnet breakdown significantly preceded the metasomatism induced by hydrous fluids (crystallization of Ti-rich pargasite) and the later intrusion of hydrous (Cr-Di) pyroxenite dykes. During the stages of mantle evolution, the HFSE anomalies in pyroxenes varied significantly. We note that the study of HFSE anomalies in mineral phases reveals complex geochemical histories which are not recorded by the whole-rock system.  相似文献   

12.
Transformation of enstatite — diopside — jadeite pyroxenes to garnet   总被引:1,自引:1,他引:1  
The high-pressure stability of enstatite(En)-diopside(Di)-jadeite(Jd) pyroxenes has been investigated experimentally with a split-sphere anvil apparatus (USSA-2000). On the enstatite-pyrope join, the compositions of garnet coexisting with enstatite were determined at 100–165 kbar and 1450–1850° C. The results indicate complete solubility between enstatite and pyrope. In the system CaO-MgO-Al2O3-SiO2 (CMAS), the compositions of coexisting pyroxenes and garnet were determined at 100–165 kbar and 1250–1750° C. At 157 kbar, 1650° C, garnet with the composition En79Di21 (mol%) forms on the En-Di join. In the system Na2O-MgO-Al2O3-SiO2 (NMAS), the compositions of coexisting pyroxenes and garnet were determined at 60–160 kbar and 1200–1850° C. On the En-Jd join, the first garnet has the composition En48Jd52 at 135 kbar, 1650° C, and En53Jd47 at 140 kbar, 1500° C. On the Di-Jd join, the first garnet with the composition Di63Jd37 forms around 170 kbar, 1650° C. In the En-Di-Jd system, the first appearance of garnet with the composition En42Di9Jd49 is estimated at 133 kbar, 1650° C. The new pyroxene with the composition NaMg0.5Si2.5O6 (NaPx) transforms to garnet at 154 kbar, 1650° C. The experimental results indicate that the transformation of a twopyroxene assemblage to garnet and residual pyroxene in the En-Di-Jd system could occur at pressures consistent with the 400 km seismic discontinuity and in a pressure interval of 0–3 kbar.  相似文献   

13.
Spinel peridotite xenoliths associated with the Rio Grande Rift axis (Potrillo and Elephant Butte volcanic fields) and the western rift shoulder (Adams Diggings) have been investigated to correlate pre-eruptive pressure and temperature conditions with xenolith deformation textures and rift location. Temperatures of xenolith equilibration at the rift shoulder are 100–250°C cooler for a given pressure than the temperatures at the rift axis. Undeformed xenoliths (protogranular texture) are derived from higher temperature and higher pressure conditions than deformed xenoliths (porphyroclastic and equigranular textures) in the rift axis. Exsolution lamellae in pyroxenes, small decreases in Al contents of orthopyroxenes from core to rim, and small differences in porphyroclastic orthopyroxene compositions versus neoblastic orthopyroxene compositions indicate high temperatures followed by cooling and a larger cooling interval in deformed rocks than in undeformed rocks. These features, along with thermal histories based on calcium zoning in olivine rims, indicate that the upper mantle under Adams Diggings and Elephant Butte has undergone cooling from an initial high temperature state followed by a late heating event, and the upper mantle under Potrillo has undergone cooling, reheating, and late heating events.  相似文献   

14.
The hydration of peridotites modelled by the system H2O-CaO-MgO-Al2O3-SiO2 has been treated theoretically after the method of Schreinemakers, and has been investigated experimentally in the temperature range 700°–900° C and in the pressure range of 8–14 kbar. In the presence of excess forsterite and water, the garnet- to spinel-peridotite transition boundary intersects the chlorite dehydration boundary at an invariant point situated at 865±5° C and 15.2±0.3 kbar. At lower pressures, a model spinel lherzolite hydrates to both chlorite- and amphibole-bearing assemblages at an invariant point located at 825±10° C and 9.3±0.5 kbar. At even lower pressures the spinel-to plagioclase-peridotite transition boundary intersects the dehydration curve for amphibole+forsterite at an invariant point estimated to lie at 855±10° C and 6.5±0.5 kbar.Both chlorite and amphibole were characterized along their respective dehydration curves. Chlorite was found to shift continuously from clinochlore, with increasing temperature, to more aluminous compositions. Amphibole was found to be tremolitic with a maximmum of 6 wt.% Al2O3.The experimentally determined curves in this study were combined with the determined or estimated stability curves for hydrous melting, plagioclase, talc, anthophyllite, and antigorite to obtain a petrogenetic grid applicable to peridotites, modelled by the system H2O-CaO-MgO-Al2O3-SiO2, that covers a wide range of geological conditions. Direct applications of this grid, although quite limited, can be made for ultramafic assemblages that have been extensively re-equilibrated at greenschist to amphibolite facies metamorphism and for some highgrade ultramafic assemblages that display clear signs of retrogressive metamorphism.  相似文献   

15.
Twenty spinel peridotite xenoliths from Pliocene alkali basaltic tuffs and lavas of the western Pannonian Basin (Hungary) have been analysed for bulk rock major and trace elements, electron probe mineral compositions, and REE and Sr, Nd isotopes on separated and leached clinopyroxenes. The xenoliths are texturally diverse, including protogranular, porphyroclastic, equigranular and poikilitic textures which can generally be correlated with geochemical features. Protogranular xenoliths are relatively undepleted in Ca, Al, Ti and Na, whereas poikilitic xenoliths are more refractory. LREE-depleted patterns. and MORB-like Nd and Sr values are associated with protogranular peridotites. In contrast, xenoliths with complex textures are generally LREE-enriched. Much of the isotopic variation in the suite (Sr=–20.4 to +10.4, +Nd=+1.8 to +13.7) can be related to interaction between protogranular mantle and melts resembling the host alkali basalts, but a third (high Sr) component may be due to Miocene subduction beneath the region.  相似文献   

16.
The enstatite-diopside solvus presents certain interesting thermodynamic and crystal-structural problems. The solvus may be considered as parts of two solvi one with the ortho-structure and the other with clino-structure. By assuming the standard free energy change for the two reactions (MgMgSi2O6)opx ? (MgMgSi2O6)cpx and (CaMgSi2O6) opx ? (CaMgSi2O6) cpx as 500 and 1 000 to 3 000 cal/mol respectively, it is possible to calculate the regular solution parameter W for orthopyroxene and clinopyroxene. These W's essentially refer to mixing on M2 sites. The expression for the equilibrium constant by assuming ideal mixing for Fe-Mg, Fe-Ca and non-ideal mixing for Ca-Mg on binary M1 and ternary M2 sites is given by 1 $$K_a = \frac{{X_{{\text{Mg - cpx}}}^{{\text{M1}}} X_{{\text{Mg - cpx}}}^{{\text{M2}}} \exp \left[ {\frac{{W_{{\text{cpx}}} }}{{RT}}\left\{ {X_{{\text{Ca - cpx}}}^{{\text{M2}}} \left( {X_{{\text{Ca - cpx}}}^{{\text{M2}}} + X_{{\text{Fe - cpx}}}^{{\text{M2}}} } \right)} \right\}} \right]}}{{X_{{\text{Mg - cpx}}}^{{\text{M1}}} X_{{\text{Mg - opx}}}^{{\text{M2}}} \exp \left[ {\frac{{W_{{\text{cpx}}} }}{{RT}}\left\{ {X_{{\text{Ca - opx}}}^{{\text{M2}}} \left( {X_{{\text{Ca - opx}}}^{{\text{M2}}} + X_{{\text{Fe - opx}}}^{{\text{M2}}} } \right)} \right\}} \right]}}$$ where X's are site occupancies, R is 1.987 and T is temperature in oK. Temperature of pyroxene crystallization may be estimated by substituting for T in the above equation until the equation ?RT In K a=500 is satisfied. The shortcomings of this method are the incomplete standard free energy data on the end member components and the absence of site occupancy data in pyroxenes at high temperatures. The assumed free energy data do, however, show the possible extent of inaccuracy in temperature estimates resulting from the neglect of Mg-Ca non ideality.  相似文献   

17.
Two spinel harzburgite xenoliths from a Pleistocene alkali basalt unit erupted at the northwestern corner of the Tertiary Kishb Plateau (Saudi Arabia) are characterized by an incipient transition from protogranular to porphyroclastic texture. Vermicular and interstitial spinels are closely associated with neoblasts of olivine, enstatite, and diopside. Sparse exsolution lamellae of high-Ca pyroxene occur in all the enstatite porphyroblasts. Olivine neoblasts are, in many cases, in contact with one another, with the triple grain junctions rarely approaching 120°. Chemical zoning is undetectable by microprobe in spinel and olivine, whereas zoning of Al in enstatite and diopside indicates that chemical equilibrium was not attained. Clear, palegreen glasses occur as veinlets about 10 microns or less in width along grain boundaries and cracks. Consistent counting rates for Na in these glasses were obtained only at 5 kV with a sample current of about 6 namps and counting time of less than 7 s. These glasses are chemically homogeneous and are characterized by relatively high contents of SiO2 (55.8–58.7 wt%), Na2O (6.4–7.6 wt%), and Al2O3 (20.0–21.6 wt%), with inferred volatile contents of less than 1 wt%. The glass is suggested to be of upper mantle origin rather than having developed from the host basalt or by decompressional melting upon ascent.Geothermometry and geobarometry indicate that the lithospheric upper mantle beneath the Arabian Shield had been locally heated to higher than 1,050° C during Miocene/ Pliocene, resulting in some degree of partial melting. Spinel was formed by reaction between aluminous pyroxenes and olivine during subsequent cooling, and intercrystalline Mg-Fe exchange reached a steady state at about 800° C. The geotherm beneath the Arabian Shield since Miocene is estimated to be somewhat lower than that representing the present oceanic upper mantle. The thermal history established is consistent with the tectonic history of the Red Sea area and indicates a two-stage magmatism in the Arabian Shield since Miocene.  相似文献   

18.
Experimental melting relationships for a mafic minette (mica-lamprophyre) from Buell Park, Arizona were determined under fO2 conditions equivalent to the ironwüstite-graphite and quartz-fayalite-magnetite buffers, at pressures of 10–20 kbar. A comparison between experimental products and phenocrysts in the most primitive minettes indicates that those lavas preserve a near-liquidus assemblage of olivine, diopside and Ti-rich phlogopite crystallized in the upper mantle under fO2QFM and in the presence of an H2O-bearing fluid phase. It is suggested that micalamprophyric (minette) magmas may originate from a metasomatized, garnet-bearing peridotitic source at deeper levels in the mantle (P20 kbar) but can also be in equilibrium with a phlogopite-bearing wehrlite (±opx) source at pressures of 17–20 kbar, under reducing or oxidizing mantle conditions. Owing to their rapid crystallization rate and high liquidus temperatures, a series of potassic daughter melts (potassic latites and felsic minettes) can be formed by segregation from mafic minette parents during their ascent through the cooler continental crust. The preservation of olivine in equilibrium with phlogopite phenocrysts in primitive minettes precludes a petrogenetic process dominated by assimilation/fractional crystallization in a shallow magma chamber and supports a model by which some lamprophyric magmas are brought to near surface conditions at temperatures in the range of 1,000–1,200° C and chilled rapidly.  相似文献   

19.
Melting relations at 5 and 20 kbar on the composition join sanidine-potassium carbonate are dominated by a two-liquid region that covers over 60% of the join at 1,300 ° C. At this temperature, the silicate melt contains approximately 19 wt% carbonate component at 5 kbar and 32 wt% carbonate component at 20 kbar. The conjugate carbonate melt contains less than 5 wt% silicate component, and it varies less as a function of temperature than does the silicate melt.Partition coefficients for Ce, Sm, and Tm between the immiscible carbonate and silicate melts at 1,200 ° and 1,300 ° C at 5 and 20 kbar are in favor of the carbonate melt by a factor of 2–3 for light REE and 5–8 for heavy REE. The effect of pressure on partitioning cannot be evaluated independently because of complementary changes in melt compositions.Minimum REE partition coefficients for CO2 vapor/carbonate melt and CO2 vapor/silicate melt can be calculated from the carbonate melt/silicate melt partition coefficients, the known proportions of melt, and maximum estimates of the proportion of CO2 vapor. The vapor phase is enriched in light REE relative to both melts at 20 kbar and enriched in all REE, especially the light elements, at 5 kbar. The enrichment of REE in CO2 vapor relative to both melts is 3–4 orders of magnitude in excess of that in water vapor (Mysen, 1979) at 5 kbar and is approximately the same as that in water vapor at 20 kbar.Mantle metasomatism by a CO2-rich vapor enriched in light REE, occurring as a precursor to magma genesis, may explain the enhanced REE contents and light REE enrichment of carbonatites, alkali-rich silicate melts, and kimberlites. Light REE enrichment in fenites and the granular suite of nodules from kimberlites attests to the mobility of REE in CO2-rich fluids under both mantle and crustal conditions.  相似文献   

20.
Xenoliths collected from Prindle volcano, Alaska (Lat. 63.72°N; Long. 141.82°W) provide a unique opportunity to examine the lower crust of the northern Canadian Cordillera. The cone's pyroclastic deposits contain crustal and mantle-derived xenoliths. The crustal xenoliths include granulite facies metamorphic rocks and charnockites, comprising orthopyroxene (opx)–plagioclase (pl)–quartz (qtz) ± mesoperthite (msp) and clinopyroxene (cpx). Opx–cpx geothermometry yields equilibrium temperatures (T) from 770 to 1015 °C at 10 kbar. Pl–cpx–qtz geobarometry yields pressures (P) of  6.6–8.0 kbar. Integrated mesoperthite compositions suggest minimum temperatures of 1020–1140 °C at 10 kbar using solvus geothermometry. The absence of garnet in these rocks indicates a range of maximum pressure of 5–11.3 kbar, and calculated solidi constrain upper temperature limits. We conclude that the granulite facies assemblages represent relatively dry metamorphism at pressures indicative of crustal thicknesses similar to present day ( 36 km). Zircon separates from a single crustal xenolith yield mainly Early Tertiary (48–63 Ma) U–Pb ages which are considerably younger than the cooling ages of the high-pressure amphibolites exposed at the surface. The distribution of zircon ages is interpreted as indicating zircon growth coincident with at least two different thermal events as expressed at surface: (i) the eruption of the Late Cretaceous Carmacks Group volcanic rocks in western Yukon and adjacent parts of Alaska, and (ii) emplacement of strongly bimodal high level intrusions across much of western Yukon and eastern Alaska possibly in an extensional tectonic regime. The distributions of zircon growth ages and the preservation of higher-than-present-day (> 25 ± 3 °C km− 1) geothermal gradients in the granulite facies rocks demonstrate the use of crustal xenoliths for recovering records of past, lithospheric-scale thermal–tectonic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号