首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to characterize the composition of the parental melts of intracontinental alkali-basalts, we have undertaken a study of melt and fluid inclusions in olivine crystals in basaltic scoria and associated upper mantle nodules from Puy Beaunit, a volcano from the Chaîne des Puys volcanic province of the French Massif Central (West-European Rift system). Certain melt inclusions were experimentally homogenised by heating-stage experiments and analysed to obtain major- and trace-element compositions. In basaltic scoria, olivine-hosted melt inclusions occur as primary isolated inclusions formed during growth of the host phase. Some melt inclusions contain both glass and daughter minerals that formed during closed-system crystallisation of the inclusion and consist mainly of clinopyroxene, plagioclase and rhönite crystals. Experimentally rehomogenised and naturally quenched, glassy inclusions have alkali-basalt compositions (with SiO2 content as low as 42 wt%, MgO>6 wt%, Na2O+K2O>5 wt%, Cl~1,000–3,000 ppm and S~400–2,000 ppm), which are consistent with those expected for the parental magmas of the Chaîne des Puys magmatic suites. Their trace-element signature is characterized by high concentration(s) of LILE and high LREE/HREE ratios, implying an enriched source likely to have incorporated small amounts of recycled sediments. In olivine porphyroclasts of the spinel peridotite nodules, silicate melt inclusions are secondary in nature and form trails along fracture planes. They are generally associated with secondary CO2 fluid inclusions containing coexisting vapour and liquid phases in the same trail. This observation and the existence of multiphase inclusions consisting of silicate glass and CO2-rich fluid suggest the former existence of a CO2-rich silicate melt phase. Unheated glass inclusions have silicic major-element compositions, with normative nepheline and olivine components, ~58 wt% SiO2, ~9 wt% total alkali oxides, <3 wt% FeO and MgO. They also have high chlorine levels (>3,000 ppm) but their sulphur concentrations are low (<200 ppm). Comparison with experimental isobaric trends for peridotite indicates that they represent high-pressure (~1.0 GPa) trapped aliquots of near-solidus partial melts of spinel peridotite. Following this hypothesis, their silica-rich compositions would reflect the effect of alkali oxides on the silica activity coefficient of the melt during the melting process. Indeed, the silica activity coefficient decreases with addition of alkalis around 1.0 GPa. For mantle melts coexisting with an olivine-orthopyroxene-bearing mineral assemblage buffering SiO2 activity, this decrease is therefore compensated by an increase in the SiO2 content of the melt. Because of their high viscosity and the low permeability of their matrix, these near-solidus peridotite melts show limited ability to segregate and migrate, which can explain the absence of a chemical relationship between the olivine-hosted melt inclusions in the nodules and in basaltic scoria.  相似文献   

2.
Zircon-bearing xenoliths in continental basalts are often interpreted as witnesses of the continental basement uplifted during volcanic eruptions. Nevertheless, their origin is still debated. The Devès basaltic plateau belongs to the alkaline volcanic province of the French Massif Central. In few outcrops, zircon-bearing nepheline syenite xenoliths were preserved. U–Pb dating of the zircon crystals define an age of 956 ± 11 kyr constraining the crystallisation time of the zircons and consequently of the host xenoliths. This age, together with mineral chemistry arguments lead us to conclude that these minerals do not derive from a continental protolith. Rather, they likely result from the crystallisation of a liquid characterised by a nepheline–felspar composition and produced by the differentiation of a basaltic magma or, alternatively, by the low degree partial melting of a metasomatised lithospheric mantle. Such alkaline sialic rock and xenoliths may occur in large volumes at depth and generate the large amounts of zircon megacrysts discovered worldwide in secondary deposits within continental basaltic provinces.  相似文献   

3.
Anhydrous spinel peridotite xenoliths in Quaternary nepheline-basanite and melilite- or sodalite-bearing lavas of the Wau-en-Namus volcano in S Libya range from lherzolites to harzburgites recording melt extraction in a shallow setting (≤ 2 GPa). Primary clinopyroxenes have distinct trace element characteristics documenting LILE (large ion lithophile element) depletion or enrichment events predating the formation of glass pockets and veins in the xenoliths. These glasses are aluminous and alkali-rich, range in composition from ultrabasic to silicic (43–67 wt.% SiO2) and may contain empty vugs and micro-phenocrysts of olivine, clinopyroxene, spinel, plagioclase, sodalite, apatite that are similar in composition to phenocrysts in the host lavas. Reactions of infiltrating melt and xenolith minerals are documented by diffuse Fe–Ca-rich rims of olivine in contact with glass, and by spongy-textured reaction domains caused by incongruent dissolution of primary pyroxenes and spinel. Some glasses have trace element characteristics similar to that of the host Ne-basanite, suggesting they were derived from the same source during entrainment and transport to the surface. Incompatible element enrichment and Sr–Nd isotopic compositions of the analyzed host lava are similar to HIMU (high μ; μ = 238Pb/204Pb)-type magmas, but the Pb isotopic composition is less radiogenic compared to other intra-plate Neogene magmatic rocks from N Africa.  相似文献   

4.
5.
International Journal of Earth Sciences - New U–Pb dating on zircon yielded ca. 470&nbsp;Ma ages for the granitoids from the Lévézou massif in the southern French Massif...  相似文献   

6.
A three-point Sm–Nd isotope isochron on fluorite from the very large Montroc fluorite vein deposit (southern Massif Central, France) defines an age of 111±13 Ma. Initial Nd of –8.6 and initial 87Sr/86Sr of ~0.71245 suggest an upper crustal source of the hydrothermal system, in agreement with earlier work on fluid inclusions which indicated a basinal brine origin. The mid-Cretaceous age of ~111 Ma suggests the Albian/Aptian transition as the most likely period for large-scale fluid circulation during a regional extensional tectonic event, related to the opening of the North Atlantic ocean.Editorial handling: B. Lehmann  相似文献   

7.
Accessory, homogeneous ilmenite and rutile are important oxide phases in amphibole-rich high-pressure cumulate veins which crosscut the Lherz orogenic lherzolite massif. Those veins crystallized from alkaline melts at P = 1.2–1.5 GPa within the uppermost lithospheric mantle. Transitional basalts contaminated by peridotitic wall-rocks and then uncontaminated alkali basalts (basanites) reused the same vein conduits. Petrographic observations give evidence that Fe–Ti oxide saturation depends on the silica contents of each parental melt. The water-poor silica-rich transitional melts that generated websterites and plagioclase-rich clinopyroxenites reached early Ti-oxide saturation (1,200°C; 1.5 GPa). Rutile is as abundant as ilmenite. It is enriched with Nb–Zr–Hf by a factor of 10–100 relative to either amphibole or ilmenite. The amphibole pyroxenites and hornblendites crystallized from basanites reached late Fe–Ti oxide saturation after precipitation of amphibole, with ilmenite crystallizing along with phlogopite in the latter. The Lherz ilmenites are devoid of exsolution and contain very little trivalent iron. This compositional feature indicates more reducing crystallization conditions than usually inferred for alkali lavas and their megacrysts (FMQ ± 1). The veins incompletely equilibrated for redox conditions with their wall-rock peridotites which record more oxidizing conditions (FMQ ± 1). The veins also exchanged magnesium and chromium, as suggested by Cr-bearing, Mg-rich ilmenite (up to 44 mol% MgTiO3) in veins less than 3–4 cm thick. Mg-rich ilmenite megacrysts occurring in alkali basalts could be actually xenocrysts from veins similar in thickness to those occurring at the Lherz massif, although crystallized from more oxidized magmas.  相似文献   

8.
A suite of mainly spinel peridotite and subordinate pyroxenite xenoliths and megacrysts were studied in detail, enabling us to characterize upper mantle conditions and processes beneath the modern North American–Eurasian continental plate boundary. The samples were collected from 37-Ma-old basanites cropping out in the Main Collision Belt of the Chersky Range, Yakutia Republic (Russian Far East). The spinel lherzolites reflect a mantle sequence, equilibrated at temperatures of 890–1,025 °C at pressures of 1.1–2 GPa, with melt extraction estimated to be around 2–6 %. The spinel harzburgites are characterized by lower P–T equilibration conditions and estimated melt extraction up to 12 %. Minor cryptic metasomatic processes are recorded in the clinopyroxene trace elements, revealing that percolating hydrous fluid-rich melts and basaltic melts affected the peridotites. One of the lherzolites preserves a unique melt droplet with primary dolomite in perfect phase contact with Na-rich aluminosilicate glass and sodalite. On the basis of the well-constrained P–T frame of the xenolith suite, as well as the rigorously documented melt extraction and metasomatic history of this upper mantle section, we discuss how a carbonated silicate melt infiltrated the lherzolite at depth and differentiated into an immiscible carbonate and silicate liquid shortly before the xenolith was transported to the surface by the host basalt. Decreasing temperatures triggered crystallization of primary dolomite from the carbonate melt fraction and sodalite as well as quenched glass from the Na-rich aluminosilicate melt fraction. Rapid entrainment and transport to the Earth’s surface prevented decarbonatization processes as well as reaction phenomena with the host lherzolite, preserving this exceptional snapshot of upper mantle carbonatization and liquid immiscibility.  相似文献   

9.
To better understand the origin, migration, and evolution of melts in the lithospheric mantle and their roles on the destruction of the North China Craton (NCC), we conducted a petrological and geochemical study on a quartz-bearing orthopyroxene-rich websterite xenolith from Hannuoba, the NCC, and its hosted melt and fluid inclusions. Both clinopyroxene and orthopyroxene in the xenolith contain lots of primary and secondary inclusions. High-temperature microthermometry of melt inclusions combined with Raman spectroscopy analyses of coexisting fluid inclusions shows that the entrapment temperature of the densest inclusions was ~1215°C and the pressure ~11.47 kbar, corresponding to a depth of ~38 km, i.e. within the stability of the spinel lherzolite. Intermediate pressure inclusions probably reflect progressive fluid entrapment over a range of depths during ascent, whereas the low-pressure inclusions (P < 2 kbar) may represent decrepitated primary inclusions. In situ laser-ablation ICP-MS analyses of major and trace elements on individual melt inclusions show that the compositions of these silicate melt inclusions in clinopyroxene and orthopyroxene are rich in SiO2, Al2O3, and alkalis but poor in TiO2 and strongly enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), with negative anomalies of high-field strength elements (HFSEs). These characteristics suggest that the silica-rich melts could be derived from the partial melting of subducted oceanic slab. Therefore, this kind of quartz-bearing orthopyroxene-rich websterite may be produced by interaction between the slab-derived melts with the mantle peridotite. This study provides direct evidence for the origin, migration, and evolution of melts in the lithospheric mantle, which may play an important role in the destruction of the NCC.  相似文献   

10.
The Upper Cretaceous lignite deposits of La Garnache, Vendée (north-western France), consist of two lignitic clay series, Garnache 1 and Garnache 2, separated by a fault. The first series cropped out to the south of the fault during road works until 2002 but is now covered by an embankment. It has provided numerous pieces of amber containing arthropod and micro-organism inclusions. The second lignitic series, exposed to the north of the fault, is rich in fossil wood but devoid of amber. Palynological analysis of Garnache 1 revealed several Normapolles species belonging to the genera Atlantopollis, Complexiopollis, Osculapollis, Plicapollis and Trudopollis, but larger forms typical of Senonian deposits are absent. By contrast, Garnache 2 proved to be dominated taxonomically and numerically by spores (Appendicisporites, Camarozonosporites, Gleicheniidites, Patellasporites, Stereisporites), associated with a few gymnosperm (Cerebropollenites, Phyllocladidites, Classopollis) and angiosperm (Liliacidites, Retitricolpites and a single specimen of the Normapolles Complexiopollis) taxa. Garnache 1 is, therefore, younger than Garnache 2, the latter being clearly Cenomanian in age whereas Garnache 1 is more likely to be Turonian. Lignitic clay of Garnache 1 contains numerous translucent, orange to red, pieces of amber. Vendean amber is rich in aquatic arthropods, such as tanaids and epicarideans (Crustacea), as well as marine or brackish siliceous micro-organisms such as diatoms and sponge spicules. These aquatic inclusions indicate that resin-producing trees grew along and close to the seashore. The amber-bearing clay was deposited in a calm, estuarine or lagoonal, muddy environment.  相似文献   

11.
The Moulin de Chéni orogenic gold deposit is the only granite-hosted deposit of the Saint-Yrieix district, French Massif Central. It occurs in 338±1.5 Ma-old peraluminous leucogranites and is characterized by intense microfracturing and bleaching of the granite in relation to pervasive sulfide crystallization. Formation of quartz veins and gold deposition occurred in two successive stages: an early mesozonal stage of quartz-sulfide (Fe-As-S) deposition, usually devoid of gold and a late epizonal stage of base metal and gold deposition. Both stages postdate peak metamorphism and granite intrusion. The genesis of the deposit is the result of four successive fluid events: (1) Percolation of aqueous-carbonic metamorphic fluids under an assumed lithostatic regime of 400–450 °C, at a maximum depth of 13 km; (2) Formation of the main quartz lodes with coeval K-alteration and introduction of As and S from aqueous-carbonic fluids percolating along regional faults. Arsenopyrite and pyrite deposition was linked to the alteration of Fe-silicates into K-feldspar and phengite at near-constant iron content in the bulk granite. Temperature was similar to that of the preceding stage, but pressure decreased to 100–50 MPa, suggesting rapid uplift of the basement up to 7.5 km depth; (3) The resulting extensional tectonic leads to the deposition of gold, boulangerite, galena and sphalerite in brecciated arsenopyrite and pyrite from aqueous fluids during a mixing process. Temperature and salinity decrease from 280 to 140 °C and 8.1 wt% eq. NaCl to 1.6 wt% eq. NaCl, respectively; (4) Sealing of the late fault system by barren comb quartz which precipitated from dilute meteoric aqueous fluids (1.6 wt% eq. NaCl to 0.9 wt% eq. NaCl) under hydrostatic conditions at 200–150 °C.Editorial handling: B. Lehmann  相似文献   

12.
《Applied Geochemistry》1993,8(4):339-356
The abundant data available on the geochemistry and mineralogy of the Herynian gold deposit of Le Chaˆtelet (Massif Central, France) formed the basis for an analysis of the complex signature of a gold deposit and its hydrothermal alteration haloes. This study describes the deposit and its environment at various scales.The sulfide paragenesis of the Le Chaˆtelet deposit resulted from several stages, one of which was an event responsible for the deposition of Au-bearing arsenopyrite quartz veins; the Au is contained within the arsenopyrite lattice. Hydrothermal activity associated with these veins produced two superimposed alteration haloes: an outer halo of kaolinite + tosudite + siderite alteration that developed at the expense of the plagioclase minerals, and an inner halo of illite±siderite alteration that affected all the minerals. The hydrothermal alteration was followed by silicification of the wall rocks and then deposition of the Au-bearing arsenopyrite.The hydrothermal alteration related to the event also generated geochemical signatures such as Li, B, LREE, As, Sb, Au and W anomalies. Mineralogical studies and geochemical analyses of the hydrothermal facies show that: (1) the anomalous Li is trapped mainly in the tosudite lattice and to a lesser degree in the illite lattice; and (2) the B is probably located in tosudite and illite lattices. Arsenic, Sb and Au are contained in the arsenopyrite lattice.During weathering, the lithochemical signatures (determined by the analytical techniques used in this study) lose some of their specific characteristics, depending on the original concentrations. At deposit scale (0.25–1.0 km2), B and Li in the soill profiles indicate zones of hydrothermal alteration, whereas As and Au indicate zones of mineralization. At a regional scale, the association of Au, Li and B in stream sediments is characteristics of this type of mineralization. Therefore, in the hydrothermal setting described at Le Chaˆtelet, Au, As, Li and B appear, at all scales, to be dependable pathfinders for Au-bearing hydrothermal systems of possible economic interest.  相似文献   

13.
14.
The Ransko gabbro-peridotite massif in Eastern Bohemia is a strongly differentiated intrusive complex of Lower Cambrian age. The complex hosts low grade Ni-Cu ores mainly developed close to the contact of olivine-rich rocks with gabbros, in troctolites and, to a much lesser extent, in both pyroxene and olivine gabbros and plagioclase-rich peridotites. The ore zone is characterized by strong serpentinization and uralitization. The total Ni + Cu locally reaches up to 4 wt%. Anomalous concentrations of platinum-group elements (PGE's) (maximum 532 ppb Pd, 182 ppb Pt, 53 ppb Rh, 15 ppb Ru, 41 ppb Ir) were detected in samples of Cu-Ni and Ni-Cu ores (maximum 2.63 wt% Ni and 2.31 wt% Cu) from the Jezírka orebody. The main ore paragenesis includes pyrrhotite, pentlandite, chalcopyrite, cubanite, pyrite, magnetite, mackinawite, valleriite, ilmenite and sphalerite. During this work, michenerite, froodite, sperrylite, gold, native bismuth, altaite, tsumoite, hessite, an unnamed Bi-Ni telluride, cobaltite-gersdorffite and galena were newly identified. The host rocks originated through partial melting of a slightly depleted mantle source with noble metals scavenged from this primitive magma prior to the development of these rocks.  相似文献   

15.
16.
The Ronda peridotite is a group of lherzolite slabs (1.5 to 2 km thick) in southern Spain. Despite clear evidence that pre-Alpine events affected pre-Permo-Triassic units from the Alborán domain (internal zone of the Betic-Rif Cordillera, Spain, and Morocco), numerous papers continue to emphasize Alpine metamorphic and structural evolution. Here, we evaluate the pre-Cenozoic evolution of the Ronda peridotite by reporting new petrographic and U–Pb SHRIMP zircon dating of meta-sedimentary rocks from the Jubrique zone (Alpujárride Complex, Betic Cordillera, Spain) directly overlying the Ronda peridotite. Field inspection and petrographical study revealed generalized migmatitic textures and a gradual transition mainly defined by garnet content (from ~30 to <3 wt.%) and size (from 1.5 cm to <0.5 mm) in the overlying granulite-gneiss sequence, suggesting that most garnet grew as a consequence of the peridotite emplacement. Garnet shows notable variations in composition and inclusion types, which are interpreted as reflecting different stages of garnet growth. Diamond-bearing garnets are only well-preserved in gneisses from the uppermost part of the sequence, whereas the large garnets from rocks overlying the peridotite mainly record later thermal events. SHRIMP zircon dating indicates two age peaks at 330 ± 9 and 265 ± 4 Ma. The oldest age characterizes rims overgrowing detrital cores and reflects an early Hercynian metamorphism; the younger age characterizes zircon with magmatic oscillatory zoning, reflecting anatexis. On the basis of these data and of previous dating of monazite included in the large garnets, we conclude that the peridotite was emplaced either shortly before or during early Hercynian times, ~330 Ma.  相似文献   

17.
18.
Chemical mass transfer was quantified in a metacarbonate xenolith enclosed within the granodiorite of the Quérigut massif (Pyrenees, France). Mass balance calculations suggest a strong decrease of CaO, SrO and CO2 contents (up to −90%), correlated with a decrease of modal calcite content as the contact is approached. Most other chemical elements behave immobile during metasomatism. They are therefore passively enriched. Only a small increase of SiO2, Al2O3 and Fe2O3 contents occurs in the immediate vicinity of the contact. Hence, in this study, skarn formation is characterized by the lack of large chemical element influx from the granitoid protolith. A large decrease of the initial carbonate volume (up to −86%) resulted from a combination of decarbonation reactions and loss of CaO and CO2. The resulting volume change has potentially important consequences for the interpretation of stable isotope profiles: the isotope alteration could have occured over greater distances than those observed today.  相似文献   

19.
Apatite fission-track analysis performed on eighteen Mesozoic sediment samples of the Neuquén Basin from the Southern Central Andes orogenic front between 35°30′ and 37°S has revealed Campanian-Paleocene (75-55 Ma), late Eocene-early Oligocene (35-30 Ma) and middle Miocene (15-10 Ma) cooling episodes. Each cooling episode corresponds closely with major unconformities observed in the preserved sedimentary sequences, and is associated with kilometer-scale additional burial and subsequent exhumation. A similar degree of cooling is inferred from associated vitrinite reflectance data. Late Eocene-early Oligocene exhumation is recognized only near the eastern orogenic front adjacent to the foreland in the southernmost part of the study area and may be related partly to within-plate magmatism and associated extension in the Palaoco Basin. The Campanian-Paleocene and middle Miocene cooling episodes are recognized more widely in the fold and thrust belt and appear to coincide with periods of eastward arc expansion and mountain building processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号