首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Biosorption is an effective method to remove heavy metals from wastewater. In this work, the biosorption of Cd(II) onto Hydrilla verticillata was examined in aqueous solution with parameters of initial pH, adsorbent dosage, contact time, initial Cd(II) concentration, temperature, and co-existing ion. Linear Langmuir and Freundlich models were applied to describe the equilibrium isotherms, and both of the two models were fitted well. The monolayer adsorption capacity of Cd(II) was found to be 50 mg/g at pH 6 and 20°C. Dubinin–Radushkevich isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (11.18 kJ/mol) indicated that the adsorption of Cd(II) onto H. verticillata might be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, including free energy (∆G 0), enthalpy (∆H 0), and entropy (∆S 0) of adsorption, were also calculated. These results showed that the biosorption of Cd(II) onto H. verticillata was a feasible, spontaneous, and exothermic process in nature. Desorption experiments indicated that 0.01 mol/L EDTA and HNO3 were efficient desorbents for the recovery of Cd(II) from biomass. IR spectrum analysis suggested that amido, hydroxyl, C=O and C–O could combine strongly with Cd(II). EDX spectrum analysis suggested that an ion exchange mechanism might be involved.  相似文献   

2.
A kinetic study was conducted on the adsorption of orthophosphate anions on layer double hydroxide (LDH). The adsorption has proved itself to be a spontaneous endothermic process and is large in capacity and rate. The adsorption isotherm correlates well with the Freundlich model, and a rise in temperature will lead to an increase in adsorption efficiency. Additionally, the results suggested that the adsorption is an entropy-increasing process and is in good agreement with the pseudo-second order kinetics. The free energy (ΔG) of adsorption of orthophosphate onto LDH varies within the range of −1.75–−3.34 kJ/mol, the enthalpy (ΔH) varies by 7.96 kJ/mol and the entropy (ΔS) by 33.59 kJ/mol. The adsorption activation energy is 8.3 kJ/mol, showing that the adsorption of orthophosphate onto LDH is determined to be a physical adsorption.  相似文献   

3.
In this study, magnetite–maghemite nanoparticles were used to treat arsenic-contaminated water. X-ray photoelectron spectroscopy (XPS) studies showed the presence of arsenic on the surface of magnetite–maghemite nanoparticles. Theoretical multiplet analysis of the magnetite–maghemite mixture (Fe3O4-γFe2O3) reported 30.8% of maghemite and 69.2% of magnetite. The results show that redox reaction occurred on magnetite–maghemite mixture surface when arsenic was introduced. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on contact time and initial concentration of arsenic. Equilibrium was achieved in 3 h in the case of 2 mg/L of As(V) and As(III) concentrations at pH 6.5. The results further suggest that arsenic adsorption involved the formation of weak arsenic-iron oxide complexes at the magnetite–maghemite surface. In groundwater, arsenic adsorption capacity of magnetite–maghemite nanoparticles at room temperature, calculated from the Langmuir isotherm, was 80 μmol/g and Gibbs free energy (∆G0, kJ/mol) for arsenic removal was −35 kJ/mol, indicating the spontaneous nature of adsorption on magnetite–maghemite nanoparticles.  相似文献   

4.
以氧化还原共沉淀的方法将铁锰复合氧化物负载于坡缕石黏土表面,制备负载型吸附剂,由静态吸附实验研究了吸附剂对磷的吸附性能,探讨了吸附的动力学特征、热力学参数和吸附机理。结果显示,吸附剂对磷的吸附受溶液初始pH值、吸附时间及温度的影响,在中性条件下吸附平衡时间为90 min,pseudo-second-order吸附动力学方程能较好描述吸附过程,吸附表观活化能为11.76 k J/mol;吸附等温线与Freundlich方程的拟合结果略优于Langmuir方程,由Langmuir方程得到最大吸附量为26~31 mg/g。吸附焓变为9.29 k J/mol,吸附熵变为正值,自由能变为-4.3~-5.8 k J/mol,吸附作用有多层不均匀吸附的性质,同时包含物理作用和化学作用,但不属强的化学键作用。  相似文献   

5.
In this study, the adsorption kinetics, equilibrium and thermodynamics of Fe3+ ions on natural (NAP) and synthetic (HAP) apaties were examined. The adsorption efficiency of Fe3+ onto the NAP and HAP was increased with increasing temperature. The kinetics of adsorption of Fe3+ ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 37.15 and 49.84 kJ·mol 1 for NAP and HAP, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin–Redushkevich (D–R) isotherm equations at different temperatures. RL separation factor for Langmuir and the n value for Freundlich isotherm show that Fe3+ ions are favorably adsorbed by NAP and HAP. Various thermodynamic parameters such as enthalpy (ΔH), Gibbs free energy (ΔG) and entropy (ΔS) changes were computed and the results showed that the adsorption of Fe3+ ions onto NAP and HAP were spontaneous and endothermic in nature.  相似文献   

6.
Adsorption and desorption of uranium(VI) from dilute aqueous solutions by Eucalyptus citriodora distillation sludge was studied in a batch mode. The potential of Eucalyptus citriodora distillation sludge to remove uranium(VI) from aqueous solutions has been investigated at different conditions of solution pH, metal ion concentrations, biosorbent dosage, biosorbent particle size, contact time and temperature. The results indicated that biosorption capacity of Eucalyptus citriodora distillation sludge was strongly affected by the medium pH, the biosorbent dose, metal ion concentrations and medium temperature. Reduction in particle size increased the biosorption capacity. Langmuir and Freundlich isotherm models were applied to biosorption data to determine the biosorption characteristics. An optimum biosorption capacity (57.75 mg/g) was achieved with pH 4.0, particle size 0.255 mm, biosorbent dose 0.5 g/100 mL and initial uranium(VI) concentration of 100 mg/L. Uranium(VI) removal by Eucalyptus citriodora distillation sludge was rapid, the equilibrium was established within 60 min and pseudo-second-order model was found to fit with the experimental data. The biosorption process decreased with an increase in the temperature indicating its exothermic nature. Pretreatments of biomass with different reagents affected its biosorption capacity. A significant increase (34 %) in biosorption capacity (83.25 mg/g) was observed with benzene treatment. Fourier-transform infra-red studies showed the involvement of carbonyl, carboxyl and amide groups in the biosorption process. The results indicated that sulfuric acid had the best effects as an eluent showing 93.24 % desorption capacity.  相似文献   

7.
季风性波动引起的降雨、径流和排泄过程会引发浅层地下水系统周期性氧化还原动态变化,从而对地下水系统中有害组分的迁移转化产生影响。为探讨氧化还原动态过程对沉积物中砷(As)和氟(F)释放的影响,本研究选择河北白洋淀地区沉积物样品,利用发酵罐作为反应器,建立氧化还原动态实验体系,并监测动态变化过程中实验体系各组分含量的变化。结果表明,碱性和还原环境均有利于地下水中As、F的富集。还原阶段较高的pH条件有利于溶液中F-的解吸,且体系中有机物降解会产生大量HC03-和C032-,与F-发生竞争吸附而有利于F-的富集。对于溶液中As的富集,一方面是由于还原条件下体系中的As以As(III)为主,受沉积物的吸附作用较弱,从而有利于As被释放到溶液中;另一方面是因为还原阶段较高的pH也会使反应体系中As和沉积物间的吸附作用被减弱,造成As的解吸附。由于实验所用沉积物砷含量较低,不同S042-浓度条件对氧化还原动态过程中As、F迁移的影响不明显。总之,氧化还原动态变化过程会强烈影响地下水系统中砷、氟的富集。  相似文献   

8.
 Adsorption/desorption and oxidation/reduction of arsenic at clay surfaces are very important to the natural attenuation of arsenic in the subsurface environment. Although numerous studies have concluded that iron oxides have high affinities for the adsorption of As(V), very little experimental work has addressed the arsenic attenuation capacities of different clay minerals and aging process affecting the transformation of arsenic. The abundance of clay minerals in a variety of geochemical environments and their influence on adsorption of contaminants suggests a need for more experimental work to characterize the adsorption desorption, and oxidation of arsenic on clay minerals. In this investigation three types of clay mineral were studied: the 1 : 1 layer clays [halloysite (IN), sedimentary M-kaolinite, and weathered EPK-kaolinite]; the 2 : 1 layer clays [illite (MT) and illite/montmorillonite (MT)]; the 2 :>: 1 layer clay [chlorite (CA)]. The halloysite and the chlorite had much greater As(V) adsorption (25–35 folds) than the other clay minerals. The clay minerals had lower As(III) adsorption than As(V) adsorption, and the adsorption was affected by pH. Desorption of arsenic from the clay minerals was significantly influenced by the aging process. The quantities of extractable As(III) and As(V) decreased with increasing aging time. The results demonstrated that oxidation of As(III) to As(V) occurred on the clay surfaces, whereas reduction of As(V) to As(III) was not found in any of the clay minerals studied. The oxidation of As(III) was affected by the types of clay and aging time. Received: 22 March 1999 · Accepted: 15 April 1999  相似文献   

9.
The adsorption and desorption behaviors of 17??-ethinylestradiol on various sludges derived from different treatment units of a sewage treatment plant were investigated using batch equilibration experiments. The results showed that adsorption process could be well described by pseudo-second-order kinetic model and fast adsorption played a main role. Adsorption ability varied as the order of aerobic sludge????anoxic sludge????primary sludge?>?sludge cake?>?anaerobic sludge. Adsorption/desorption isotherms were well fitted by the modified Freundlich model, and $ K_{f}^{\prime } $ values increased with the organic matter content. Thermodynamic analysis indicated that 17??-ethinylestradiol adsorption/desorption was exothermic and conducted spontaneously. After heat treatment for removing the organic carbon, $ K_{f}^{\prime } $ values decreased by more than 78%, but organic carbon normalized adsorption constant was 7.76?C29.51?mg/g. The 17??-ethinylestradiol adsorption capacity was found to decrease from 0.95?C1.39 to 0.44?C0.49?mg/g with sludge concentration increasing from 500 to 4,000?mg/L, being almost unchanged at pH 3?C10 and sharply decreasing with pH?>?10. The adsorption capacity was also found to fluctuate in the range of 2.0?C3.0?mg/g when Ca2+ concentration was <0.5?mol/L and increased rapidly above 0.5?mol/L. Addition of methanol and acetonitrile could improve 17??-ethinylestradiol desorption effect, which increased with the content of organic solvents, and the desorption degree of acetonitrile was higher than methanol.  相似文献   

10.
Asexual spores of the filamentous fungus Rhizopus arrhizus were used as the resting biomass as they tolerate chitosan gelling for mycelia growing in chitosan beads. Biosorption of lead using the dead detergent pre-treated chitosan-immobilised and grown fungal beads was performed with initial lead (II) nitrate concentrations ranging from 9.02 to 281.65 mg/L. The adsorption data were best correlated with equilibrium adsorption isotherms in the order Redlich–Peterson, Langmuir, Freundlich and Fritz–Schlünder by non-linear regression. The biosorption kinetic model of pseudo second-order (R 2 > 0.99) fitted better than pseudo first-order and modified pseudo first-order models. Among the four pseudo second-order kinetic models, the Blanchard model was the best fit for the experimental biosorption data. The rate-limiting step of biosorption of lead was shown to be intraparticle diffusion controlled according to Weber and Morris model fitting. The beads could be regenerated using 1 M nitric acid solution. This illustrated the good performance of the beads for regenerated sorption/desorption at least five cycles.  相似文献   

11.
污灌土壤对铅的吸附和解吸特性   总被引:1,自引:0,他引:1  
为了解污灌土壤对铅的吸附-解吸机制,进行不同条件下的吸附-解吸试验。结果表明:污灌土壤对铅的吸附量随铅初始浓度的增大,呈现先强烈吸附再缓和的过程。Langmuir模式对污灌土壤等温吸附铅的拟合效果最好,其饱和吸附量为7.84 mg/g。亚砷酸盐的存在会阻碍污灌土壤对Pb2+的吸附,亚砷酸盐加入前后污灌土壤对铅的吸附率从99.9%~100%下降到97.8%~99.0%。加亚砷酸盐条件下污灌土壤对铅的等温吸附模式以Freundlich模式的拟合效果最好。污灌土壤对吸附态铅的解吸量随解吸振荡时间的延长而不断增加,且解吸率随时间增加总体趋于降低。Elovich方程和幂函数方程均能很好地拟合污灌土壤对铅的解吸动力学过程,尤其是Elovich方程的拟合效果最为显著。  相似文献   

12.
成东  廖鹏  袁松虎 《地球科学》2016,41(2):325-330
地下水中的含铁胶体颗粒会携带污染物如砷等运移,但人们对该过程中的机理缺乏认识.通过群组静态吸附解吸模拟实验, 探究FeS胶体对吸附在覆Fe2O3石英砂上As(Ⅴ)的解吸作用, 以及腐殖酸(HA)、H2PO4-和HCO3-对解吸的影响.实验结果表明,室内合成的FeS胶体具有纳米级粒径和较大的比表面积,且能均匀稳定存在于水溶液中.低浓度的FeS胶体主要通过竞争覆Fe2O3石英砂表面的吸附点位将As(Ⅴ)解吸,而高浓度的FeS胶体主要通过与覆Fe2O3石英砂竞争对As(Ⅴ)的吸附而导致解吸.HA、H2PO4-和HCO3-对As(Ⅴ)的竞争解吸作用降低了FeS胶体导致的解吸效率.   相似文献   

13.
The effects of water residence time and anoxic conditions on the mobilization and speciation of As in a calcite- and pyrite-bearing altered rock excavated during a road-tunnel project has been evaluated using batch and column laboratory experiments. Higher infiltration rates (i.e., shorter water residence times) enhanced the leaching of As due to the higher pH values of the effluents and more rapid transport of dissolved As through the columns. The concentration of As in the effluent also increased under anoxic conditions regardless of the water residence time. This enhanced leaching of As under anoxic conditions could be attributed to a significant pH increase and decreased Fe oxyhydroxide/oxide precipitation compared to similar experiments done under ambient conditions. Processes that controlled the evolution of pH and the temporal release mechanisms of As under anoxic conditions were identical to those previously observed under ambient conditions: the dissolution of soluble phases, pyrite oxidation, co-precipitation and/or adsorption/desorption reactions. Speciation of As in the column experiments could partly be attributed to the pH-dependent adsorption of As species onto Fe oxyhydroxide/oxide precipitates. Moreover, apparent equilibrium of the total As and As[III] concentrations was delayed under anoxic conditions in both batch and column experiments.  相似文献   

14.
实验室合成制得的纳米铁BET比表面积为49.16 m2/g, 直径范围为20~40 nm.通过批实验考察纳米铁对As(Ⅲ)吸附动力学情况.结果表明, 在20℃、pH为7时, 纳米铁能够快速地去除As(Ⅲ), 在60 min内, 0.1 g纳米铁对起始浓度为910 μg/L溶液As(Ⅲ)去除率大于99%.反应遵循准一级反应动力学方程, 标准化后的As(Ⅲ)速率常数kSA为2.6 mL/(m2·min).纳米铁对As(Ⅲ)的吸附等温曲线能够很好地满足Langmuir和Freundlich方程, 相关系数R2>0.95, 由Langmuir模型获得单层纳米铁的最大吸附量为76.3 mg/g.0.1 mol/L NaOH对吸附在纳米零价铁(NZVI)的As(Ⅲ)解吸率为21%.在竞争阴离子中, SiO32-和H2PO4-对As(Ⅲ)的去除有明显阻碍作用, 而其他离子基本上没有影响.纳米铁对As(Ⅲ)的去除机理主要是吸附和共沉淀.   相似文献   

15.
Sorption of radionuclides onto stable colloids can significantly enhance their transport in groundwater. Batch adsorption studies were performed to evaluate the influence of various experimental parameters like initial pH, contact time, temperature and concentration of Na+ and Ca2+ ions on the sorption of Cs on clay. The sorption process is dependent on pH of the solution with distribution coefficient (K d) found to increase with increase in pH. The kinetic experiments were carried out at different temperatures, and the results have shown that the sorption process fits well into a pseudo-second-order mechanism with apparent activation energy of 45.7?kJ/mol. The rate constant was found to decrease with increase in temperature. The thermodynamic parameters such as ?G 0, ?H 0 and ?S 0 were calculated. The negative value of ?H 0 indicates that the reaction is exothermic. The negative values obtained for ?G 0 indicated that the sorption of cesium on clay was spontaneous at all studied concentrations. The distribution coefficient was found to decrease with increasing concentration of Na+ and Ca2+ ions. The cesium sorption data were fitted to Freundlich, Langmuir, Temkin and Dubinin–Radushkevich (D–R) isotherms. The values of Langmuir separation factor (R L) indicate a favorable Cs adsorption. The values of mean free energy of sorption (E) at various temperatures ranged from 10.5 to 11.1?kJ/mol, which indicates that the sorption process follows chemisorption.  相似文献   

16.
曾惠芳 《岩矿测试》1992,11(3):211-216
研究了大孔膦酸树脂对毒砂中主、次和痕量元素的吸附行为及洗脱条件,结合巯基棉和TBP柱分离技术,建立了两个分离流程。在J-A1160型多道直读光谱仪上实现了毒砂单矿物中包括主量元素Fe和As在内的20个元素测定。主量元素As和Fe的相对标准偏差(n为5~10)分别为1.03%和0.9%,其它元素在5%~11%范围。流程经实际试样分析验证,结果与化学法相符。  相似文献   

17.
Amorphous tin(VI) hydrogen phosphate (ATHP) was synthesized using the liquid phase precipitation method and served as an adsorbent to remove Pb(II), Cu(II), and Zn(II) from aqueous solutions. The ATHP was characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption–desorption techniques. Adsorption properties were evaluated as a function of pH, reaction time, concentration of reactants, and salinity. Their equilibrium adsorption data were modeled using Freundlich, Langmuir, and Dubinin–Kaganer–Radushkevich isotherms, respectively. The results revealed that adsorption equilibrium reached within 180 min. ATHP indicated good adsorption even below the pHZPC, and best adsorption at pH 5 for Pb(II) and Cu(II) and at pH 5.5 for Zn(II) was observed. Equilibrium data fitted better to the Langmuir model for Pb(II) and Cu(II) and fitted better to the Freundlich model for Zn(II). The saturated adsorption capacities deduced from the Langmuir model were 2.425, 1.801, and 0.600 mmol/g for Cu(II), Pb(II), and Zn(II), respectively, indicating an adsorption affinity order of Cu > Pb > Zn. There is a negative correlation between the concentration of NaCl and adsorption capacity of ATHP, yet ATHP still exhibited excellent adsorption having an adsorption capacity of 19.35, 15.16, 6.425 mg/g when the concentration of NaCl was 0.6 mol/L. The free energy (E) was 12.33, 10.70, and 14.74 kJ/mol for Pb(II), Cu(II), and Zn(II), respectively. An adsorption mechanism based on ion exchange between heavy metal ions and H+ in the ATHP is proposed. Furthermore, the used ATHP was regenerated by HCl solution and the adsorbent was used repeatedly.  相似文献   

18.
The adsorption kinetics of methylene blue from aqueous solutions on purified palygorskite was investigated. The kinetics data related to the adsorption of methylene blue from aqueous solutions are in good agreement with the pseudo-second order equation in ranges of initial concentration of 120-210 mg/L, oscillation speed of 100-200 r/min and temperature of 298-328K. The experimental results show that methylene blue is only adsorbed onto the external surface of purified palygorskite, and the apparent adsorption activation energy is 13.92 kJ/mol. The relatively low apparent adsorption activation energy suggests that the adsorption of methylene blue involves in not only a chemical, but also a physical adsorption process, and it is controlled by the combination of chemical adsorption and liquid-film diffusion.  相似文献   

19.
坡缕石对直接耐酸大红4BS的吸附动力学特征   总被引:3,自引:0,他引:3  
研究了坡缕石对水中直接耐酸大红4BS的吸附动力学,在初始质量浓度为30~50 mg/L,转速为100~200 r/min,以及温度为303~348 K的范围内,坡缕石对直接耐酸大红4BS的吸附动力学数据均符合准二级速率方程。结果表明,坡缕石对直接耐酸大红4BS的吸附是外表面吸附,吸附表观活化能为11.92 kJ/mol,说明此吸附是由液膜扩散控制的物理吸附过程。  相似文献   

20.
We used titration calorimetry to measure the bulk heats of proton and Cd adsorption onto a common Gram positive soil bacterium Bacillus subtilis at 25.0 °C. Using the 4-site non-electrostatic model of Fein et al. [Fein, J.B., Boily, J.-F., Yee, N., Gorman-Lewis, D., Turner, B.F., 2005. Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. Geochim. Cosmochim. Acta69 (5), 1123-1132.] to describe the bacterial surface reactivity to protons, our bulk enthalpy measurements can be used to determine the following site-specific enthalpies of proton adsorption for Sites 1-4, respectively: −3.5 ± 0.2, −4.2 ± 0.2, −15.4 ± 0.9, and −35 ± 2 kJ/mol, and these values yield the following third law entropies of proton adsorption onto Sites 1-4, respectively: +51 ± 4, +78 ± 4, +79 ± 5, and +60 ± 20 J/mol K. An alternative data analysis using a 2-site Langmuir-Freundlich model to describe proton binding to the bacterial surface (Fein et al., 2005) resulted in the following site-specific enthalpies of proton adsorption for Sites 1 and 2, respectively: −3.6 ± 0.2 and −35.1 ± 0.3 kJ/mol. The thermodynamic values for Sites 1-3 for the non-electrostatic model and Site 1 of the Langmuir-Freundlich model of proton adsorption onto the bacterial surface are similar to those associated with multifunctional organic acid anions, such as citrate, suggesting that the protonation state of a bacterial surface site can influence the energetics of protonation of neighboring sites. Our bulk Cd enthalpy data, interpreted using the 2-site non-electrostatic Cd adsorption model of Borrok et al. [Borrok, D., Fein, J.B., Tischler, M., O’Loughlin, E., Meyer, H., Liss, M., Kemner, K.M., 2004b. The effect of acidic solutions and growth conditions on the adsorptive properties of bacterial surfaces. Chem. Geol.209 (1-2), 107-119.] to account for Cd adsorption onto B. subtilis, yield the following site-specific enthalpies of Cd adsorption onto bacterial surface Sites 2 and 3, respectively: −0.2 ± 0.4 and +14.4 ± 0.9 kJ/mol, and the following third law entropies of Cd adsorption onto Sites 2 and 3, respectively: +57 ± 4 and +128 ± 5 J/mol K. The calculated enthalpies of Cd adsorption are typical of those associated with Cd complexation with anionic oxygen ligands, and the entropies are indicative of inner sphere complexation by multiple ligands. The experimental approach described in this study not only yields constraints on the molecular-scale mechanisms involved in proton and Cd adsorption reactions, but also provides new thermodynamic data that enable quantitative estimates of the temperature dependence of proton and Cd adsorption reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号