首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 345 毫秒
1.
Assessment of nitrate contamination of Lidder catchment Kashmir, India   总被引:1,自引:1,他引:0  
Nitrate contamination in the groundwater from various sources is one of the major problems of water resources in Liddercatchment, Kashmir. Systematic sampling was carried out during summer 2007, with a view to understand the source of nitrate ions in the groundwater of the Lidder catchment. Twelve sample sites were selected and samples were taken for a baseline study to understand the geochemistry of the groundwater and to assess the overall physico-chemical characteristics. Results showed that NO 3 ? concentration in ranged from 18.72?mg/L to 75.93?mg/L with an average of 47.03?mg/L. More than 80% (83.33%) of the samples collected from various sampling stations had nitrate concentrations exceeding the threshold value of 20?mg/L, and 58.33% of the samples collected had nitrate concentrations higher than 50?mg/L, the maximum acceptable nitrate concentration for drinking water. There is a wide spatial variation in the nitrate concentration in the groundwater. Monitoring the water quality of various sampling stations showed that the lowest concentrations of nitrate were found in the wet season (January, February, and December), while the highest concentrations were found in the dry season (August, September). Numerous human perturbations have been detected affecting the water quality of Lidder catchment. Disposal of sewage and animal wastes was found to contribute about 85% of total nitrate pollution in the study area. Based on the trend analysis (using previous data), future scenario of nitrate pollution has been predicted in the study area. The results of this study are useful to highlight one of the most important environmental problems, namely the degradation of the water quality, and may serve to alert and encourage local and national authorities to take substantial steps and actions to protect and manage water quality.  相似文献   

2.
Prolonged exposure to excessive levels of nitrate through drinking water is a potential risk for human health. The current research reports the analytical results and associated health risk for water quality in term of nitrate in 39 groundwater samples during January 2018 in rural areas of Gonabad and Bajestan, Iran. Nitrate concentrations ranged from 1.8 to 82.2 and from 5.5 to 84.3 mg/L for Gonabad and Bajestan, respectively. In this work, the potential risk to human health was determined using the hazard quotient (HQ) for three age groups including adults, children and infants. Comparison of HQs among the 39 sampling sites showed that the rural areas in Bajestan had higher HQs than Gonabad. Among the studied groups, infants exposed to a higher risk than children and adults. The results also indicated that the health of individuals from nitrate exposure in most of the groundwater studied was not acceptable and most of the consumers were in danger from current nitrate concentrations. Therefore, there is an urgent need for enforcing effective plans to improve groundwater quality and to better manage and control probable nitrate contaminated sources.  相似文献   

3.
Twenty private wells and ten stream locations were sampled to assess the source and fate of dissolved nitrate in the Cedar River watershed of Iowa, USA. The average levels of nitrate in groundwater decreased from 39.5 mg/L in May, to 38 mg/L in July, to 30 mg/L in September. Although several surface water samples exceeded MCL in May, most values dropped to below 20 mg/L by July and September. The decreasing N levels were attributed to the gradual uptake of nitrate by growing crops as well as the cyanobacterial growth in the aquatic systems. The δ15N values of dissolved nitrate in groundwater ranged from +0.45 to +5.35‰, whereas those in surface water ranged from +1.48 to +5.16‰. The results suggested that commercial fertilizers and soil organic nitrogen were probably mixed up in their transport pathways. A fertilizer-only source would provide much lower delta values, whereas soil nitrogen would provide higher than observed delta values. Denitrification was considered unlikely because of the low δ15N values, high nitrate concentrations, and moderately high DO content in groundwater. Animal wastes were not found as a possible source of nitrate in the water. This is supported by the low chloride concentrations and lower than 10‰ delta values in the water samples. The study demonstrates that nitrogen isotope data in coordination with the dissolved nitrate levels and land use can be effectively used in nitrogen source identification and its transformation studies.  相似文献   

4.
Gökçekaya Dam is one of the dams located on the Sakarya River (Eski?ehir) in Turkey and is approximately 38 years old. No study regarding to the water quality of the dam lake has been hitherto made. This study aimed at determining the seasonal variations with physical, chemical, and biological parameters of the water quality of the dam lake. Depth-wise water samples were taken from five selected stations, in seasonal periods during 2005–2008, and anlayzed. The quality of water was classified in accordance with the results and taking into consideration many parameters. At the same time, number and type diversities of dissolved heavy metals and algae population were analyzed. Using principal component analysis (PCA) and classification analysis (CA) methods, differences between these parameters and samples from stations have been determined . The analysis showed that Gökçekaya dam lake, formerly an oligotrophic lake, has become a mesotrophic lake. And according to the results thereof the Lake has mezotrophic characteristics due to the sudden changes (including household waste water inflow and opening the Sar?yar dam lake shutters) in certain periods and in some stations. Hierarchical clustering analysis, revealed no significant difference between the measured parameters. And according to the Water Pollution Control Regulations in Turkey (WPCR) Gökçekaya dam lake is in the first class quality in terms of anions, cations, heavy metals, temperature, and pH values. However, the is of first class quality presence of nitrite reduces the water quality in the lake and causes this lake to be classified in the fourth class quality.  相似文献   

5.
The present study aims at assessing water quality of river Yamuna in one of the world’s most polluted and populated megacities, Delhi. Conductivity, salinity and sodium content were within the permissible categories. Chloride concentration exceeded acceptable levels of drinking water guidelines. Water quality was poor at all locations with respect to heavy metal contamination, especially along the lower section of the Delhi stretch. Heavy metal concentrations were manifold higher than the acceptable limits of drinking water according to the BIS guidelines and reached ~29, 4.9, 10, 31, 27, 83, 7.3 and 27 times higher, respectively, for metals aluminum, copper, chromium, cadmium, iron, lead, manganese and nickel. The Najafgarh and the Shahdara drains are major point sources. Low oxidation–reduction potential reflected high organic loads and traces of eutrophication together with significant levels of nitrate and total phosphate. Discharges from agriculture, sewage and power plants could be important sources of high metal concentration. This calls for urgent measures to be taken for prevention of metal contamination in the river, through both, technology as well as implementation of regulations in order to sustain huge populations in megacities like Delhi. Waste water treatment from point sources needs tremendous improvement on the city. Treatment of the entire waste generated up to the tertiary level is required for minimizing dissolved solids, especially toxic metals, and rendering reuse in agriculture suitable. Treatment plants need proper operation, maintenance, uninterrupted power supply and regular monitoring. Various measure and programmes need to be undertaken to ensure safe reuse of wastewater.  相似文献   

6.
The impact of urbanization on groundwater quality is of special concern for water managers dealing with the provision of drinking water to large urban centers. Nitrate is one of the most common contaminants found in urban aquifers. This paper presents a case study aiming at evaluating the distribution and sources of nitrate in an urban aquifer in the city of Mar del Plata, Argentina. Four study zones under different land uses, including a pristine, a semi-rural, an intermediate, and an urban area, were evaluated as a part of this study. The three latter zones are linked by the groundwater flow system. The average nitrate concentration in the pristine area is 6.7 mg/L as nitrate and is over the permissible level of 50 mg/L for drinking water in the other areas. In the semi-rural area it ranges from 39.2 to 107.1 mg/L with an average value of 38.2 mg/L and the nitrate concentration tends to decrease in the intermediate zone to an average value of 38.2 mg/L; however, values above 60 mg/L are also observed there. Then the nitrate concentration in the urban area water is higher than that in the intermediate zonewater ranging from 48.2 to 100.3 mg/L with an average value of 67.3 mg/L. Data on the stable isotopes 15N and 18O in nitrate show that the main sources of nitrate in the study area are manure associated to agriculture uses and cesspools in the semi-rural area, and leakage of the sewage distribution network in the urban area, respectively. This is supported by a previous study which found that 20 % of the water flooding many underground structures in the city came from leakage of the sewage network. No evidence of nitrate attenuation by denitrification was found in the groundwater. This study has shown that aquifers in urban areas can be affected by agricultural activity in the upstream areas and leakage of the sewage network in the urban area.  相似文献   

7.
Climatic changes and anthropogenic activities could affect nutrients?? status significantly in the different lake ecosystems. Nutrients in Lake Hulun and Lake Taihu, two largest shallow cyanobacteria-blooming lakes in northern and southern China, respectively, were at eutrophicated levels in 2009. The concentrations of total nitrogen and total phosphorus were 3.346 and 2.250?mg/L as well as 0.435 and 0.062?mg/L, respectively, in these two lakes with different causes of eutrophication. For Lake Hulun, it was the decreased amount of water as a result of the warming and drying climate that accounted for the abrupt increase of total nitrogen and total phosphorus levels through inspissation. In addition, the icebound effects, no outflows, low nutrients sequestration by the sediment and the reduction of aquatic productivity made the situation even worse. On the contrary, high population densities, the rapid development of agriculture and industry as well as urbanization have increased the nitrogen and phosphorus loads on Lake Taihu. Therefore, higher criteria of total nitrogen and total phosphorus should be applied in Lake Hulun given the difficulties in controlling climatic changes while much more rigorous standards should be established for Lake Taihu since the anthropogenic impacts on nutrient status are relatively easy to control.  相似文献   

8.
The purpose of this study was to assess exposure of four trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in drinking water of Okinawa Island and Samoa. Trihalomethanes compounds were determined in the drinking water samples that were collected from the selected consumption sites and treatment plants of both Okinawa and Samoa in 2003–2004. The Chatan and Nishihara Water Treatment Plants (Okinawa) uses both ozonation and chlorination for primary and secondary disinfection. For Samoa Water Treatment Plants only chlorination is used as primary disinfection. Results showed that the mean concentration of trihalomethanes from treatment plants in Okinawa ranged from 0.30 ± 1.81 ?g/L to 11 ± 2.68 ?g/L and from the consumption sites ranged from 2.08 ± 0.32?g/L to 19.39 ± 100 ?g/L. In comparison, the mean concentration of trihalomethanes from the treatment plants in Samoa ranged from 226 ± 81.2 ?g/L to 267 ± 92.3 ?g/L and from the consumption sites were in the ranges 212 ± 101 ?g/L to 387 ± 125 ?g/L. Brominated compounds were commonly seen in all samples collected in Okinawa. Among the trihalomethanes compounds, chloroform was the common detected trihalomethanes in the samples collected from Samoa. The trihalomethanes levels in all samples collected in Okinawa and Samoa were generally below the guideline values in Japan, but some samples displayed levels which exceeded the level of Japan Water Quality and WHO Standards for chlorinated and brominated compounds.  相似文献   

9.
安国英  郭兆成  叶佩 《现代地质》2022,36(2):406-417
依据1989年至2019年云南大理地区所辖12个气象站点的气候数据和洱海水质监测资料等文献,分析大理地区气候变化特征和洱海富营养化变化趋势,并总结洱海水质综合营养状态指数与降水量、气温的相互关系。结果表明,1989年至2019年期间,大理地区的年平均气温呈波动上升趋势,气候变暖明显,冬季气温升温幅度最大;年降水量总体呈波动下降趋势,秋季降水量减少最为显著。洱海水质的综合营养状态指数及单因子总氮、总磷、高锰酸盐指数等总体呈升高趋势,而水体透明度呈降低趋势;进一步可分成2个阶段,即2003年之前呈快速上升或下降变化趋势;2003年之后呈波动稳定趋势。洱海综合营养状态指数与年平均气温呈正相关,与年降水量呈负相关关系;总氮、水体透明度分别与年平均气温正相关和负相关,与年降水量则呈负相关和正相关;而总磷与冬季平均气温、高锰酸盐指数与夏季或冬季平均气温均呈正相关关系。年内变化上,洱海污染指数、综合营养状态指数在最近的2015—2019年期间呈现6—10月份明显增高,显示非汛期水质明显好于汛期状况。总之,1989—2019年期间,受大理地区气温升高、降水量减少导致入湖水量减少的影响,洱海综合营养状态指数呈升高趋势,湖泊富营养化进程加剧状况没有得到改善,洱海水环境仍然比较脆弱。  相似文献   

10.
Considering the importance of groundwater resources in water-supply demands in arid and semiarid areas such as Iran, it is essential to investigate the risk of groundwater pollution. Nitrate is one of the main pollutants that penetrate into the groundwater from various sources such as chemical fertilizers, pesticides, and domestic and industrial sewage. Unfortunately currently, nitrate contamination of the aquifers is a serious problem in Iran. The Karaj aquifer is not exempted, and the nitrate pollution zone, with concentrations far beyond the permitted limit (50 mg/L), expands fast. In this paper, the long-term groundwater-quality data (from 2000 to 2013) collected from Alborz Province Water and Wastewater Company were analyzed using ArcGIS10 and statistical software, and the spatial and temporal patterns of nitrate pollution in drinking-water wells in the Karaj plain and effective parameters (such as depth to groundwater level, hydraulic gradient, land use, precipitation, and urban, agricultural and industrial wastewater) were investigated. The authors also investigated the status of nitrate concentration variation using the concepts of geostatistics, based on determinations from 62 to 194 surveyed wells with a suitable distribution across the plain. With respect to the relationship between quality parameters, hydrogeological status of the aquifer and land usage, causes of the increase in the concentration of nitrate in the water and its trend were investigated as well. Results revealed that the nitrate levels in the northern portion of the study area were the highest with maximum concentrations of 181.7 mg/L from 2000 to 2013. Based on nitrate concentration distribution maps, the levels of nitrate increased from 2006 onwards to 26–100 mg/L. Unfortunately from 2008 to 2012, a pollution zone with a nitrate water concentration of 101–150 mg/L has been observed and even a concentration of 180 mg/L has been determined. In 2000, the entire aquifer area has been drinkable but with the increase in nitrate concentration, the area with undrinkable water has expanded to 21% in 2003, 24% in 2005, 33% in 2007, 39% in 2009, 43% in 2011 and 44% in 2013. The results of this study could provide valuable information with on the status of nitrate water concentrations in the Karaj plain which demands proper strategies and qualitative approaches in the future.  相似文献   

11.
The mercury content is studied in fish from the European Russian lakes and rivers. The results revealed significant accumulation of mercury in fish as the uppermost trophic level of aquatic ecosystems even at extremely low (<10 ng/L) content of this element in water. The maximum accumulation was found in the predatory fishes from Middle and Lower Volga, Severnaya Dvina, and small lakes subjected to anthropogenic air pollution. The influence of temperature and geochemical factors on the penetrative ability of mercury in a fish organism is considered.  相似文献   

12.
This study consisted of the determination of the trace metals and some physiochemical properties in drinking water samples from the Brong Ahafo region of the Republic of Ghana, where drinking water samples are not treated before it is consumed. The purpose was to ascertain the quality of water from these sources. Samples were taken from fifteen sampling points and analyzed for the following parameters Fe, Cu, Mn, Zn, Al, NO3 ?, NO2 ?, SO4 2, PO4 2?, and F? using the procedure outline in the palintest photometer method. The data showed the variation of the investigated parameters in samples as follows: pH 5.57-7.54, conductivity (EC) 35-1216 us/cm, turbidity 3.25-72.50 NTU,PO4 2?1 0.32-9.30 mg/L,F 0.32-1.05 mg/L,NO3 ? 0.09-0.99 mg/L,NO2 ? 0.006-0.114 mg/L, SO4 2? 3.33-8.02 mg/L, Cu 1.19-2.75 mg/L Fe 0.05-0.85mg/L, Zn 0.04-0.15 mg/L, Mn 0.003-0.011 mg/L and Al 0.05-0.15 mg/L. The concentrations of most of the investigated parameters in the drinking water samples from Brong Ahafo region were within the permissible limits of the World Health Organization drinking water quality guidelines. There were no correlations between metal concentrations in the drinking water samples.  相似文献   

13.
为研究滹沱河冲洪积扇地区地下水硝酸盐污染机制,对滹沱河冲洪积扇地区地下水和地表水进行了采样监测,运用环境健康风险评价模型对研究区硝酸盐进行评价,采用水化学和多元统计方法研究了滹沱河冲洪积扇地区地下水硝酸盐污染问题。结果表明:研究区地表水NO-3污染较轻,NO-3均值为19.54 mg/L,所有水样均未超出我国地表水环境质量标准(45 mg/L);但是,地下水已经受到了NO-3的严重污染,NO-3均值为75.84 mg/L,且有30.43%水样超出我国地下水质量标准(88. 6 mg/L)。研究区3个水文地质单元地下水硝酸盐的平均个人年健康风险分别为4.94×10-8、1.99×10-8和2.61×10-9,低于国际辐射防护委员会(ICRP)推荐的最大可接受风险水平(5.0×10-5/a),因此,认为不会对人群构成严重危害。水文地质单元和地下水埋深对硝酸盐污染有显著影响,但是,土地利用类型对硝酸盐浓度的影响不显著。滹沱河冲洪积扇地区地下水硝酸盐的主要污染来源是生活污水和化肥。此外,强烈开采地下水也是该地区NO-3污染的诱因。  相似文献   

14.
The Omerli reservoir is located on the northeastern side of the Istanbul City. It is one of the most important sources of drinking water with a surface area of 23.1 km2 and a volume of 220 × 106 m3 in the Marmara Region. Water quality characteristics of the lake investigated from May 2002 to April 2003 enabled us to identify the effect of waste loads on water quality of Omerli Lake. The following parameters were measured in the lake water: temperature (16.1°C), conductivity (250 μS/cm), secchi disk depth (1.9 m), dissolved oxygen (DO) (9.36 mg/L), nutrients [ortho-phosphate (78.9 μg/L), nitrate + nitrite (707.5 μg/L) and ammonia-nitrogen (264 μg/L)], chlorophyll a (9.43 μg/L), total organic carbon (3.33 mg/L), total suspended solids (4.54 mg/L), total poly aromatic hydrocarbon (t-PAH) (0.69 μg/L) and copper (24.5 μg/L). T-PAH (16.5 mg/g-dry-w), Cu (96.5 μg/g-dry-w), organic carbon (org-C) (2.0%) and N (0.44%) were determined in the surface sediment. The values of chlorophyll a and DO in the upper layer were relatively high and low secchi disk depths indicates eutrophic state. There are five channels discharging water, including waste water, into the lake. All channels were sampled during six occasions in order to cover variations between seasons. The following parameters were measured: total organic carbon, total phosphorus, total kjeldahl nitrogen, ammonia and total suspended solids with the flow rates. The Göçbeyli stream has the highest flow into the lake (1.5 × 108 m3/year) but most of the nutrients were discharged from the Pa?aköy channel. It is accounting for 81% of ammonia and 80% of total phosphorus into the lake. Three scenarios were run using AQUATOX model: (1) all existing inflows are discharging into the lake (present situation); (2) none is discharging; (3) all are discharging except the Pa?aköy channel. The first scenario produced concentrations consistent with measurements in the lake. In all stations, a phytoplankton peak value was predicted during November and December 2002, and January 2003. In the second scenario, as expected, a significant decrease in the concentrations was predicted. In the third scenario, a small improvement in the water quality was obtained. To significantly improve the state of the lake, instead of entering Pa?aköy channel, wastewater should bypass the lake.  相似文献   

15.
Drinking water quality was investigated in seven rural villages surrounding Mount Kasigau in southeastern Kenya, where water is piped from unprotected dammed streams and springs in the Kasigau cloud forest down to taps, kiosks, and tanks in the villages. Analyses were conducted for nutrients, trace metals, and pathogen indicators in water from community taps, water stored in homes, and collection points along the pipelines up to catchment dams on the mountain. Water was relatively free from nutrient and trace-metal contamination; however, all samples were contaminated with total coliforms and nearly all were contaminated with Escherichia coli. There was no discernable pattern in the extent of contamination from the catchment dams to the villages. In each of three villages chosen for further study, six residents were selected for a more in-depth investigation. Water quality was generally worse in water stored in those homes compared to water collected at the village taps. The quality of drinking water in homes where treatment was applied was no better than in homes with no water treatment. The Kasigau villages, as many other areas in the developing world, need inexpensive and effective water treatment, as well as an assessment of the effectiveness of sanitary and hygienic practices.  相似文献   

16.
A method based on concept of fuzzy set theory has been used for decision-making for the assessment of physico-chemical quality of groundwater for drinking purposes. Conventional methods for water quality assessment do not consider the uncertainties involved either in measurement of water quality parameters or in the limits provided by the regulatory bodies. Fuzzy synthetic evaluation model gives the certainty levels for the quality class of the water based on the prescribed limit of various regulatory bodies and opinion of the experts from the field of drinking water quality. In this paper, application of fuzzy rule based optimization model is illustrated with twenty groundwater samples from Sohna town of Gurgaon district of Southern Haryana, India. These samples were analysed for 15 different physico-chemical parameters, out of them nine important parameters were used for the quality assessment using fuzzy synthetic evaluation approach. From this study, it has been concluded that all the water samples are in acceptable category whose certainty level ranges from 44 to 100%. Water from these sources can be used for the drinking purposes if alternate water source is not available without any health concern on the basis of physico-chemical characteristics.  相似文献   

17.
Using high-resolution measures of aquatic ecosystem metabolism and water quality, we investigated the importance of hydrological inputs of phosphorus (P) on ecosystem dynamics in the oligotrophic, P-limited coastal Everglades. Due to low nutrient status and relatively large inputs of terrestrial organic matter, we hypothesized that the ponds in this region would be strongly net heterotrophic and that pond gross primary production (GPP) and respiration (R) would be the greatest during the “dry,” euhaline estuarine season that coincides with increased P availability. Results indicated that metabolism rates were consistently associated with elevated upstream total phosphorus and salinity concentrations. Pulses in aquatic metabolism rates were coupled to the timing of P supply from groundwater upwelling as well as a potential suite of hydrobiogeochemical interactions. We provide evidence that freshwater discharge has observable impacts on aquatic ecosystem function in the oligotrophic estuaries of the Florida Everglades by controlling the availability of P to the ecosystem. Future water management decisions in South Florida must include the impact of changes in water delivery on downstream estuaries.  相似文献   

18.
Hydrochemical and water-quality (except biological) data obtained through a two-year sampling and analysis program indicate that the highest concentrations of groundwater pollution occur in the central and eastern parts of Eski?ehir city. Groundwater quality degradation outside the urban area results from agricultural activities. The most serious pollution of groundwater in the Eski?ehir plain is from nitrogen compounds (ammonia, nitrite, and nitrate). The concentrations of ammonia, nitrite, and nitrate of the 51 surveyed water wells range from 0.01–1.65 mg/L, 0.01–1.80 mg/L, and 1.1–257.0 mg/L, respectively. Orthophosphate concentrations in groundwater range from 0.01–1.25 mg/L. Considerable seasonal fluctuation in the groundwater quality was observed. In general, the groundwater quality in wet seasons was better than the quality in dry seasons.  相似文献   

19.
The Shubenacadie River basin is the largest watershed in Nova Scotia, Canada, encompassing an area of approximately 2,800 km2 and supporting one of the most rapidly expanding populations in Atlantic Canada. A comprehensive study was carried out to assess the effect of recent development in the basin on the headwater lakes. Information on the environmental status of the lakes can be further used in the development of a management framework for the basin with respect to water quality and quantity objectives.Water and sediment quality were investigated in four of the Shubenacadie River headwater lakes. In addition, trophic status of the lakes was assessed by using dissolved phosphorus and oxygen concentrations. The surface area and mean depth of the lakes ranged from 0.83 to 1.13 km2 and 4.3 to 6.6 m, respectively. Three of the studied lakes were thermally stratified during the summer. The concentration of dissolved oxygen decreased significantly in the hypolimnion during the stratification period, although the lakes were generally classified as oligotrophic. The water quality is typical for lakes of the area. The pH of the water ranged between 6.1 and 7.3 during the study period. Major ions were chloride, sodium, and sulphate. A significant increase of As, Hg, Zn, Pb, Cu, Ni and Co was found in surface sediments in all four lakes. However, the concentration of these elements in lake water was lower than recommended guidelines for aquatic life and human consumption.  相似文献   

20.
Calcite (CaCO3), dolomite [CaMg(CO3)2], silicate dissolution, ion-exchange and reverse ion-exchange reactions are the predominant processes influencing groundwater quality in the Savelugu?CNanton District. The main objective of this study is to characterize groundwater and delineate water?Crock interactions responsible for the chemical evolution of groundwater in the District. Eighty-one (81) boreholes were sampled for quality assessment. Results showed that, the pH of the boreholes are slightly acidic to basic ranging from 6.1?C8.3?pH units. Conductivity values are low to high ranging from 147?C23,200???S/cm with, 23.5?% of groundwater within the study area being either brackish (1,500?C5,000???S/cm) or saline (>5,000???S/cm) and therefore, unsuitable for potable purposes. TDS values in groundwater varied widely, ranging from 62?C11,900?mg/L. 61.7?% of groundwater within the study area are fresh (TDS?<?500?mg/L). The chemical constituents generally, have low concentrations and are within the WHO (Guidelines for drinking water quality. Revision of the 1993 Guidelines. Final Task Group Meeting. Geneva, 2004) Guideline values. The relative abundance of cations and anions in the groundwater are in the order: Ca2+?>?Na+?>?Mg2+?>?K+ and HCO3 ??>?Cl??>?SO4 2??>?NO3 ? respectively. Multivariate statistical analysis showed expected process-based relationship derived mainly from the geochemical and biochemical processes within the aquifer. Hydrochemical facies using piper plot of major ions showed one major hydrochemical water type. The Ca?CMg?CHCO3 water type. Due to the high cost of drilling of boreholes coupled with the high percentage (×1?%) of people without access to potable water in the Northern Region, it is recommended that the Government of Ghana and other stakeholders within the Water Sector take immediate measures to reduce (to recommended limits for potable uses) the levels of dissolved solids either by installing Reverse Osmosis equipments on such boreholes or employ other relatively known cheaper methods to reduce the dissolved solids to recommended limits. High yielding boreholes with hydrochemical parameters within WHO guideline limits in the Savelugu?CNanton District could also be mechanized to serve a wider area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号