首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We propose approximate equations for P -wave ray theory Green's function for smooth inhomogeneous weakly anisotropic media. Equations are based on perturbation theory, in which deviations of anisotropy from isotropy are considered to be the first-order quantities. For evaluation of the approximate Green's function, earlier derived first-order ray tracing equations and in this paper derived first-order dynamic ray tracing equations are used.
The first-order ray theory P -wave Green's function for inhomogeneous, weakly anisotropic media of arbitrary symmetry depends, at most, on 15 weak-anisotropy parameters. For anisotropic media of higher-symmetry than monoclinic, all equations involved differ only slightly from the corresponding equations for isotropic media. For vanishing anisotropy, the equations reduce to equations for computation of standard ray theory Green's function for isotropic media. These properties make the proposed approximate Green's function an easy and natural substitute of traditional Green's function for isotropic media.
Numerical tests for configuration and models used in seismic prospecting indicate negligible dependence of accuracy of the approximate Green's function on inhomogeneity of the medium. Accuracy depends more strongly on strength of anisotropy in general and on angular variation of phase velocity due to anisotropy in particular. For example, for anisotropy of about 8 per cent, considered in the examples presented, the relative errors of the geometrical spreading are usually under 1 per cent; for anisotropy of about 20 per cent, however, they may locally reach as much as 20 per cent.  相似文献   

3.
Generalized Born scattering of elastic waves in 3-D media   总被引:1,自引:0,他引:1  
It is well known that when a seismic wave propagates through an elastic medium with gradients in the parameters which describe it (e.g. slowness and density), energy is scattered from the incident wave generating low-frequency partial reflections. Many approximate solutions to the wave equation, e.g. geometrical ray theory (GRT), Maslov theory and Gaussian beams, do not model these signals. The problem of describing partial reflections in 1-D media has been extensively studied in the seismic literature and considerable progress has been made using iterative techniques based on WKBJ, Airy or Langer type ansätze. In this paper we derive a first-order scattering formalism to describe partial reflections in 3-D media. The correction term describing the scattered energy is developed as a volume integral over terms dependent upon the first spatial derivatives (gradients) of the parameters describing the medium and the solution. The relationship we derive could, in principle, be used as the basis for an iterative scheme but the computational expense, particularly for elastic media, will usually prohibit this approach. The result we obtain is closely related to the usual Born approximation, but differs in that the scattering term is not derived from a perturbation to a background model, but rather from the error in an approximate Green's function. We examine analytically the relationship between the results produced by the new formalism and the usual Born approximation for a medium which has no long-wavelength heterogeneities. We show that in such a case the two methods agree approximately as expected, but that in a media with heterogeneities of all wavelengths the new gradient scattering formalism is superior. We establish analytically the connection between the formalism developed here and the iterative approach based on the WKBJ solution which has been used previously in 1-D media. Numerical examples are shown to illustrate the examples discussed.  相似文献   

4.
5.
6.
7.
Velocity estimation remains one of the main problems when imaging the subsurface with seismic reflection data. Traveltime inversion enables us to obtain large-scale structures of the velocity field and the position of seismic reflectors. However, as the media currently under study are becoming more and more complex, we need to know the finer-scale structures. The problem is that below a certain range of velocity heterogeneities, deterministic methods become difficult to use, so we turn to a probabilistic approach. With this in view, we characterize the velocity field as a random field defined by its first and second statistical moments. Usually, a seismic random medium is defined as a homogeneous velocity background perturbed by a small random field that is assumed to be stationary. Thus, we make a link between such a random velocity medium (together with a simple reflector) and seismic reflection traveltimes. Assuming that the traveltimes are ergodic, we use 2-D seismic reflection geometry to study the decrease in the statistical traveltime fluctuations as a function of the offset (the source–receiver distance). Our formulae are based on the Rytov approximation and the parabolic approximation for acoustic waves. The validity and the limits are established for both of these approximations in statistically anisotropic random media. Finally, theoretical inversion procedures are developed for the horizontal correlation structure of the velocity heterogeneities for the simplest case of a horizontal reflector. Synthetic seismograms are then computed (on particular realizations of random media) by simulating scalar wave propagation via finite difference algorithms. There is good agreement between the theoretical and experimental results.  相似文献   

8.
9.
10.
Velocity shift in random media   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
b
A new method is presented by means of which one can compute finite frequency synthetic seismograms for media whose velocity and density are continuous functions of two or three spatial variables. Basically, the method is a generalization of the familiar phase integral method, to which it reduces in a stratified medium. For a given source location the travel-time and distance functions needed to compute synthetics are obtained by numerically tracing rays through the model. This information is then used to evaluate a double integral over frequency and take-off angle at the source. The solution obtained reduces to the geometrical optics solution wherever that is valid but it also works in shadows and at caustics without knowing explicitly where these may be located. The method can be used as a spectral method, in which the integral over take-off angle is evaluated first, or as a slowness method, in which the frequency integral is evaluated first.  相似文献   

13.
14.
Summary. A numerically efficient global matrix approach to the solution of the wave equation in horizontally stratified environments is presented. The field in each layer is expressed as a superposition of the field produced by the sources within the layer and an unknown field satisfying the homogeneous wave equations, both expressed as integral representations in the horizontal wavenumber. The boundary conditions to be satisfied at each interface then yield a linear system of equations in the unknown wavefield amplitudes, to be satisfied at each horizontal wavenumber. As an alternative to the traditional propagator matrix approaches, the solution technique presented here yields both improved efficiency and versatility. Its global nature makes it well suited to problems involving many receivers in range as well as depth and to calculations of both stresses and particle velocities. The global solution technique is developed in close analogy to the finite element method, thereby reducing the number of arithmetic operations to a minimum and making the resulting computer code very efficient in terms of computation time. These features are illustrated by a number of numerical examples from both crustal and exploration seismology.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号