首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mafic microgranular enclaves (MMEs) in host granitoids can provide important constraints on the deep magmatic processes. The Oligocene-Miocene granitoid plutons of the NW Anatolia contain abundant MMEs. This paper presents new hornblende Ar-Ar ages and whole-rock chemical and Sr-Nd isotope data of the MMEs from these granitic rocks. Petrographically, the MMEs are finer-grained than their host granites and contain the same minerals as their host rocks (amphibole + plagioclase + biotite + quartz + K-feldspar), but in different proportions. The Ar-Ar ages of the MMEs range from 27.9 ± 0.09 Ma to 19.3 ± 0.01 Ma and are within error of their respective host granitoids. The MMEs are metaluminous and calc-alkaline, similar to I-type granites. The Sr-Nd isotopes of MMEs are 0.7057 to 0.7101 for 87Sr/86Sr and 0.5123 to 0.5125 for 143Nd/144Nd, and are similar to their respective host granitoids. These lithological, petrochemical and isotopic characteristics suggest that the MMEs in this present study represent chilled early formed cogenetic hydrous magmas produced during a period of post-collisional lithospheric extension in NW Anatolia. The parental magma for MMEs and host granitoids might be derived from partial melting of underplated mafic materials in a normally thickened lower crust in a post-collisional extensional environment beneath the NW Anatolia. Delamination or convective removal of lithospheric mantle generated asthenospheric upwelling, providing heat and magma to induce hydrous re-melting of underplated mafic materials in the lower crust.  相似文献   

2.
西藏曲水碰撞花岗岩的混合成因:来自成因矿物学证据   总被引:5,自引:3,他引:5  
西藏曲水碰撞花岗岩地处冈底斯构造-岩浆带中部,呈东西向平行雅鲁藏布缝合带分布.该岩体以花岗闪长岩、石英闪长岩为主,其次为石英二长闪长岩.岩体内普遍发育微粒镁铁质包体.对花岗闪长岩、石英闪长岩及微粒镁铁质包体的成因矿物学研究结果显示:(1)斜长石发育环带且边缘和核部偏基性,幔部酸性;(2)斜长石斑晶边缘常含有角闪石、黑云母等暗色矿物包体;(3)钾长石X射线结构分析显示自核部向边缘温度呈现逐渐升高的特点;(4)长石矿物中普遍含有较高的Cr、Ni、Co元素,明显不同于壳熔花岗岩;(5)角闪石、黑云母矿物MgO含量高于典型壳熔花岗岩;(6)包体中发育针状磷灰石和角闪石,显示为岩浆淬冷的结果.上述特征不可能用正常岩浆分异作用来解释,而更可能是壳-幔岩浆混合作用的结果.采用矿物温压计所得到的结果也符合混合后的岩浆演化特征.  相似文献   

3.
Mafic microgranular enclaves (MMEs) are widespread in the Horoz pluton with granodiorite and granite units. Rounded to elliptical MMEs have variable size (from a few centimetres up to metres) and are generally fine-grained with typical magmatic textures. The plagioclase compositions of the MMEs range from An18?CAn64 in the cores to An17?CAn29 in the rims, while that of the host rocks varies from An17 to An55 in the cores to An07 to An33 in the rims. The biotite is mostly eastonitic, and the calcic-amphibole is magnesio-hornblende and edenite. Oxygen fugacity estimates from both groups?? biotites suggest that the Horoz magma possibly crystallised at fO2 conditions above the nickel?Cnickel oxide (NNO) buffer. The significance of magma mixing in their genesis is highlighted by various petrographic and mineralogical characteristics such as resorption surfaces in plagioclases and amphibole; quartz ocelli rimmed by biotite and amphibole; sieve and boxy cellular textures, and sharp zoning discontinuities in plagioclase. The importance of magma mixing is also evident in the amphiboles of the host rocks, which are slightly richer in Si, Fe3+ and Mg in comparison with the amphiboles of MMEs. However, the compositional similarity of the plagioclase and biotite phenocrysts from MMEs and their host rocks suggests that the MMEs were predominantly equilibrated with their hosts. Evidence from petrography and mineral chemistry suggests that the adakitic Horoz MMEs could be developed from a mantle-derived, water-rich magma (>3 mass%) affected by a mixing of felsic melt at P >2.3?kbar, T >730°C.  相似文献   

4.
黑石山铜铅锌矿床位于东昆仑造山带中段的五龙沟地区,矿区内的石英二长岩-正长岩发育有暗色微粒包体,本研究在包体中发现了硫化物。锆石U-Pb定年显示,正长岩形成于239.4±1.0Ma,具有富Si和K,贫Mg、Cr、Ni,明显的Eu负异常,富集大离子亲石元素、亏损高场强元素,较为富集的Sr-Nd-Hf同位素特征。暗色微粒包体由斜长石和角闪石组成,可见角闪石堆晶,贫硅、富钙、铝、碱和铁,Mg#值为38.37,具有明显的Eu负异常,轻重稀土分馏弱。结合宿主正长岩和暗色包体的矿物成分相似性和岩相学特征,本文认为暗色微粒包体与正长岩来自同一个岩浆房,属于同源岩浆包体,是岩浆房早期分离结晶相,被中酸性岩脉携带上升至正长岩熔体中,一起侵位至浅部地壳。综合岩石地球化学、同位素和矿物成分,本文认为正长岩是下地壳含水镁铁质岩石在压力较低条件下部分熔融的产物。暗色微粒包体中发育硫化物,且包体岩浆的硫含量远高于正长岩岩浆,指示岩浆房的早期分离结晶相带走了硫,使残余熔体贫硫。  相似文献   

5.
The Agacoren Intrusive Suite is exposed as a large intrusive body over ~500 km2 east of Lake Tuz in central Anatolia and consists of the Cokumkaya gabbro, the Agacoren granitoid, and young dikes. The Agacoren granitoid is the predominant lithology of the Agacoren Intrusive Suite, and is differentiated into several subunits ranging in composition from monzonite, through granite, to alkali feldspar granite. The Cokumkaya gabbro occurs as stocks enclosed in the Agacoren granitoid; individual bodies range in size from 10 m × 20 m to 7 km × 3 km. Young dikes cut both the Cokumkaya gabbro and the Agacoren granitoid, and are particularly abundant in the central part of the intrusive body.

Centimeter- to meter-size mafic microgranular enclaves (MME) are enclosed in the Agacoren granitoid. The enclaves are diorite, quartz diorite, and monzodiorite in composition, and represent blobs of mafic magma injected into a felsic host magma. The MME have a mineral assemblage (plagioclase + amphibole + biotite ± quartz ± K-feldspar) almost identical to that of host granitoid, but with different mineral proportions. The characteristic petrographic features of the MME are the presence of acicular apatite, blade-shaped biotite, quartz ocelli, and K-feldspar poikilitically enclosing mafic minerals. Microprobe analyses performed on amphibole and plagioclase reveal similar mineral chemistries for both the MME and the host granitoid. The anorthite contents of the plagioclases show an increase from rim to core in both the MME and the host granitoid. The rims of the MME plagioclase have compositions ranging from An5 to An40, whereas those of the host granitoid vary from An0 to An42. The cores, on the other hand, range from An30 to An90 and An20 to An90 in the MME and the host, respectively. Amphiboles are essentially of ferro-hornblende composition in the MME, and of ferro- to magnesiohornblende composition in the host granitoid. The similarity in mineral compositions reflects chemical equilibrium attained through the magma-mixing process.  相似文献   

6.
Magmatic microgranular enclaves (MMEs) are widely developed in the Shaocunwu granodiorite at the northeast margin of the eastern Jiangnan orogenic belt.Field geology showed that the MMEs occur as irregular ellipsoids near the edge of the intrusion,and consist of diorite,dominantly composed of amphibole,biotite,and plagioclase grains,with minor acicular apatite.Zircon U-Pb dating showed the ages of the host granodiorites and MMEs are 145.9±1.1 Ma and 145.6±2.5 Ma,respectively,indicating both originated during coeval late Jurassic magmatism.Whole-rock geochemical results show that the host granodiorite and MMEs have similar rare earth and trace element partition curves in spider grams,and similar ~(87)Sr/~(86)Sr,and ~(147)Nd/~(144)Nd isotope ratios,and their zircon ~(177)Hf/~(176)Hf isotopic ratios are similar.Geochemical studies indicate that both the host granodiorite and MMEs formed by mixing of coeval magma.Zircon Ti thermometers and oxygen fugacity of the host granodiorite and the MMEs show high oxygen fugacity,similar to that of W-Cu (Mo) mineralized granitoids in the eastern Jiangnan orogenic belt.A similar magma mixing process was probably one of the mechanisms that generated the W-Cu (Mo) fertile melts.  相似文献   

7.
The Zhoukoudian pluton in the North China craton is a circular granodiorite intrusion containing porphyritic diorite dykes (PDDs), porphyritic granodiorite dykes (PGDs) and abundant mafic microgranular enclaves (MMEs), which provide an excellent opportunity to study fractional crystallization and magma mixing. The PDDs and PGDs are located in the western part of the pluton with the PDDs intruded by the PGDs. The dykes have similar mineral assemblages although plagioclase in the PDDs has higher anorthite content than the PGDs. Linear relationships between the SiO2 and most major and trace element contents, as well as a positive trend of initial 87Sr/86Sr ratios and a negative trend of epsilon Nd values with increasing SiO2 contents for the dykes suggest that both types were formed by assimilation and fractional crystallization of a common parental magma. Major oxide mass balance and trace element Rayleigh fractionation modeling points to early separation of garnet (11 %), clinopyroxene (27 %), orthopyroxene (16 %), plagioclase (25 %), biotite (19 %), and apatite (2 %) and late fractionation of hornblende (25 %), plagioclase (46 %), biotite (25 %), apatite (1 %), and magnetite (3 %). Most MMEs occur within the transitional granodiorite of the Zhoukoudian pluton. Zoned MMEs, dyke-like MME swarms, local presence of concave margins, veins and enclaves of host granodiorite within some MMEs, and several MMEs surrounded by the biotite-rich granodiorite support their formation by multiple magma mixing events, which finally resulted in different whole-rock major oxides and compatible elements, but homogeneous mineral major oxides (except zoned plagioclase), whole-rock incompatible elements and Sr-Nd isotopes between the MMEs and their host granodiorite. We suggest that multiple magma mixing events might also cause complexly zoned plagioclase in the Zhoukoudian pluton. Relative calcic, irregular or patchy cores and dusty zoned mantles from the zoned plagioclase crystals and their relatively low anorthite content indicate multiple mixing events between mafic/intermediate and felsic magmas. The mafic/intermediate end-members could be represented by the diabase dykes and the PDDs. Therefore, the dykes and MMEs in the Zhoukoudian pluton are genetically linked.  相似文献   

8.
通过青海东昆仑东部沟里地区阿斯哈岩体中寄主闪长岩和暗色微粒包体的岩相学、全岩地球化学研究,确定了岩石成因及其构造属性。阿斯哈岩体中暗色包体广泛分布,包体岩性主要为角闪辉长岩。包体具有岩浆结构,部分包体具有塑性流变特征,包体中可见寄主岩石矿物的捕掳晶和针状磷灰石,表现出岩浆混合的岩相学特征。主岩及暗色包体同属准铝质、高钾钙碱性-钾玄岩系列过渡岩石,主量元素在Harker图解及Al2O3/K2O-CaO/K2O和SiO2/CaO-K2O/CaO的共分母协变图上具良好的线性关系,反映两者成分的变化与岩浆混合作用有关。两者的稀土元素配分模式总体一致,显示二者密切的成因联系。两者都富含大离子亲石元素(Rb、K),相对亏损高场强元素(Nb、Ta、P、Ti)。暗色包体具有贫硅(w(SiO2)=50.70%~53.88%)和富镁、铁、钙的地球化学特征,其Mg#值较高(Mg#=0.52~0.59),暗示其来源于俯冲带流体交代地幔楔的部分熔融。主岩的Rb/Sr值为0.22~0.27,接近地壳平均值,Nb/Ta值为14.5~15.2,介于地幔平均值与地壳平均值之间,表明寄主岩石岩浆具有壳源岩浆的性质并经历了幔源岩浆的混合作用。结合区域构造演化及构造判别,认为阿斯哈岩体形成于安第斯型活动大陆边缘的构造环境。早三叠世,阿尼玛卿洋向北俯冲,俯冲带流体交代地幔楔,导致其部分熔融形成基性岩浆,底侵的幔源基性岩浆诱发下地壳部分熔融并与之发生混合形成本区闪长岩,而其中的暗色包体为幔源岩浆混合不彻底的产物。  相似文献   

9.
《地学前缘(英文版)》2020,11(4):1305-1321
The Western Qinling Orogen(WQO) is characterized by voluminous distribution of Indosinian granitoids,the formation of which provides an important window to unravel the geochemical and geodynamic evolution and associated metallogeny.Here we investigate a group of intrusions termed "Five Golden Flowers" based on petrological,geochemical,zircon U-Pb geochronological and Lu-Hf isotopic studies on the granitoids and their mafic microgranular enclaves(MMEs).Our results show that these intrusions are genetically divided into two types,namely,magma-mixing and highly fractionated.The Jiaochangba,Lujing,Zhongchuan,and Luchuba granitoids are biotite monzogranites(220±0.8 Ma to 217±2.6 Ma) with abundant coeval MMEs(220±.1 Ma to 217±2.7 Ma).The rocks contain moderate to high SiO_2,high MgO,Rb,Sr,Ba,and Th contents,but low TiO_2,P_2 O_5,and Sc values,A/CNK of 1.1,and a range of ε_(Hf)(t) values of-11.7 to +2.23 with corresponding T_(DM2)values of 1967-1228 Ma.The MMEs possess K-feldspar megacrysts,abundant acicular apatites,and show lopsided textures.They have lower SiO_2,Al_2 O_3,and Th contents,but higher MgO,TiO_2,and Sc,with ε_(Hf)(t) values of-18.0 to +3.18 and T_(DM1) of 849-720 Ma.The data indicate that the MMEs were derived from a magma sourced from the enriched lithospheric mantle.We suggest that these host granitoids were produced by partial melting of latePaleoproterozoic to early-Mesoproterozoic lower crust with the involvement of Neoproterozoic SCLM-derived mafic magmas.The Baijiazhuang pluton is dominantly composed of leucogranite(muscovite granite and twomica monzogranite,216±1.5 Ma) without MMEs.The rocks are peraluminous with high A/CNK(1.06-1.27).Compared with the other four granitoids,the Baijiazhuang leucogranite shows higher SiO_2 content,markedly lower concentrations of TiO_2,MgO,Al_2 O_3,CaO,and Fe_2 O_3~T,and lower LREE/HREE and(La/Yb)N values.These leucogranites are also rich in Rb,Th,and U,and display marked depletions in Ba,Sr,Ti,and Eu,indicating that they experienced significant fractionation.Zircon ε_(Hf)(t) values(-10.2 to-3.27) and T_(DM2)(1868-1424 Ma),as well as the Nb/Ta and K_2 O/Na_2 O values are similar to the other four granitoids,indicating that they are likely to have been derived from a similar source;with sediments playing only a minor role in the magma generation.The low contents of Yb and Y suggest that their partial melting was controlled by garnets and micrographic texture of K-feldspar reflects high-temperature melting through undercooling.Based on the above features,we infer that the Baijiazhuang leucogranite likely represents the product of high degree fractionation of the I-type biotite monzogranite magma which generated the other four granitoids at relatively high temperatures,within magma chambers at mid-crust depths.We propose that the granitoid suite was formed in the transitional setting from synto post-collision during the collisional orogeny between the SCB and NCB,following break-off of the subducted South China Block lithosphere during 220-216 Ma.  相似文献   

10.
哈拉尕吐花岗岩基位于东昆仑东段,其中花岗闪长岩岩浆混合作用明显,是研究岩浆混合作用的良好对象.从岩石学、岩相学和矿物化学等方面对哈拉尕吐花岗岩基进行了详细研究.电子探针结果显示:寄主岩斜长石的An值同相对应包体中斜长石捕掳晶近似;包体中基质斜长石大部分具核边结构,核部和边部An值存在间断;部分包体中浅色基质斜长石的An值与具核边结构斜长石的边部近似;辉长闪长岩中斜长石具较高的An值.寄主岩角闪石同相对应包体中角闪石捕掳晶的结晶温度、压力和氧逸度较为接近;包体中基质角闪石的结晶温度和压力低于寄主岩角闪石,氧逸度稍高于寄主岩角闪石;辉长闪长岩角闪石具有最高的结晶温度和压力及最低的氧逸度.哈图沟剖面和德福胜剖面寄主岩中的斜长石和角闪石的成分具有一定差别.岩浆不同期次侵入结晶和岩浆自身演化,使不同地点斜长石和角闪石的成分和物理化学特征具有一定变化.镁铁质岩浆位于地壳深部,氧逸度较低,使结晶的角闪石具有较高的形成压力和较低的氧逸度,斜长石具较高An值;随着镁铁质岩浆注入寄主岩,由于环境突变,使斜长石受到熔蚀;由于岩浆上侵以及两种岩浆物理化学性质差别较大,导致温度、压力和水饱和度降低,氧逸度升高,使包体中残留岩浆快速结晶,形成具核边结构、浅色均一的斜长石,以及结晶程度较差、较高氧逸度的角闪石.   相似文献   

11.
内蒙古中部四子王旗大庙岩体时代及成因   总被引:13,自引:8,他引:13  
章永梅  张华锋  刘文灿  周志广 《岩石学报》2009,25(12):3165-3181
华北北缘的内蒙古中部地区出露大量晚古生代-早中生代花岗岩类,在空间上构成一条巨大的东西向花岗岩带.四子王旗大庙岩体作为一个典型的代表,以花岗闪长岩为主,其内部普遍发育暗色微粒包体(MMEs),是认识花岗岩岩石成因和演化的关键.本文对包体及寄主岩进行了同位素测年、岩相学、矿物化学、全岩主量元素和微量元素分析.寄主岩石中的锆石LA-ICPMS U-Pb年龄平均为265±7Ma(2σ),包体中单颗粒黑云母Rb-Sr年龄为253±5Ma(MSWD=0.85),属晚二叠世-早三叠世岩浆活动的产物.包体具塑性外形及岩浆结构,存在多种不平衡矿物组合;MME中的斜长石An组分及黑云母斑晶中MgO成分呈多期震荡,同时总体上均显示出幔部高于核、边部的特征,暗示斑晶可能为围岩捕虏晶,这种相似的成分变化指示包体与寄主岩相互作用引起的结晶环境改变,标志着岩浆成分的变化,是岩浆混合的标志之一;主量和微量数据进一步证明岩体的岩浆混合成因.Rb/Sr-K/Rb变化关系反映包体非结晶分异或黑云母堆晶的产物,而Ce/Pb-Ce、Ba-δEu和P_2O_5-δEu图及其他微量元素比值图等均表明花岗闪长岩体发生了岩浆混合作用,这也得到岩浆物理化学条件的支持.岩浆底侵和岩浆混合作用是该区岩体形成的主要机制和方式.岩石地球化学特征表明该岩体不同于加厚地壳和俯冲洋壳熔融的TTG和埃达克质岩石,而黑云母矿物化学和岩石地球化学显示其构造背景很可能为同碰撞环境.  相似文献   

12.
香加南山花岗岩基位于东昆仑造山带东段,岩基主要岩石类型为花岗闪长岩。千瓦大桥-加鲁河一带花岗岩体为香加南山岩基的重要组成部分。香加南山花岗岩基含大量暗色微粒包体,包体中捕掳晶丰富。千瓦大桥-加鲁河一带花岗岩体寄主岩中斜长石和暗色微粒包体中捕掳晶斜长石具正常环带,An值震荡变化,角闪石和黑云母Mg O含量和Mg#值较低,具壳源特征;暗色微粒包体中基质斜长石具核边结构,核部和边部An值存在间断,角闪石和黑云母Mg O含量和Mg#值较高,具幔源特征。LA-ICP-MS锆石U-Pb同位素定年结果显示千瓦大桥花岗闪长岩、暗色微粒包体和加鲁河辉长岩的结晶年龄分别为251.0±1.9Ma、252.8±3.0Ma和221.4±3.3Ma。千瓦大桥花岗闪长岩和加鲁河花岗闪长岩富集轻稀土元素(LREE)和大离子亲石元素(LILE),亏损高场强元素(HFSE),具较低的Mg#和Nb/Ta比值;从千瓦大桥到加鲁河花岗闪长岩呈现出由准铝质中钾钙碱性系列向准铝-弱过铝质中钾-高钾钙碱性系列演化;暗色微粒包体和加鲁河辉长岩轻重稀土元素分异程度相对较低,具较高的Mg#和Nb/Ta比值。千瓦大桥花岗闪长岩和加鲁河花岗闪长岩分别为古特提斯演化俯冲阶段和后碰撞阶段幔源岩浆底侵新生地壳使其部分熔融产物。镁铁质岩浆注入长英质岩浆的混合作用形成了暗色微粒包体。岩浆混合过程中,如果岩浆不完全混合,混合岩浆中混入物质除了长英质岩浆的残留岩浆和捕掳晶,还应该有镁铁质岩浆与长英质岩浆之间的元素梯度差导致的物质扩散;如果岩浆为近完全混合,混合岩浆近似为镁铁质岩浆和长英质岩浆以一定比例二元混合。东昆仑东段晚古生代-早中生代幔源岩浆对花岗质岩浆的影响是一个持续的过程,从俯冲阶段早期流体交代地幔熔融,到俯冲阶段后期板片断离,然后同碰撞阶段板片断离的持续影响,再到后碰撞阶段加厚地壳的拆沉作用,由于地球动力学体制不同,导致幔源岩浆影响的大小和特征不同。  相似文献   

13.
K-feldspar megacrysts are common in granitoids, but relatively rare in chemically equivalent volcanic rocks. Dacites from Taapaca volcano have euhedral sanidine megacrysts up to 5 cm long. Small crystals, where present, are rounded. Growth of the megacrysts engulfed plagioclase and amphibole crystals. Crystal size distributions (CSD) of sanidine megacrysts are hump shaped. All these data show that megacrysts developed from the host magma by coarsening: this was enabled by the cycling of magma temperature around the sanidine liquidus temperature in response to injections of more mafic magma and subsequent magmatic overturns. Plagioclase crystals enclosed in the megacrysts are small and have short, steep, straight CSDs, which contrasts with the CSDs of plagioclase in the groundmass which are shallower and extend to larger sizes. This shows that plagioclase was also coarsened approximately synchronously with sanidine, in response to the same temperature conditions.  相似文献   

14.
Rocks of the Late Cretaceous Dagbasi Pluton (88-83 Ma), located in the eastern Pontides, include mafic microgranular enclaves (MMEs) ranging from a few centimetres to metres in size, and from ellipsoidal to ovoid in shape. The MMEs are composed of gabbroic diorite, diorite and tonalite, whereas the felsic host rocks comprise mainly tonalite, granodiorite and monzogranite based on both mineralogical and chemical compositions. MMEs are characterized by a fine-grained, equigranular and hypidiomorphic texture. The common texture of felsic host rocks is equigranular and also reveals some special types of microscopic textures, e.g., oscillatory-zoned plagioclase, poikilitic K-feldspar, small lath-shaped plagioclase in large plagioclase, blade-shaped biotite, acicular apatite, spike zones in plagioclase and spongy-cellular plagioclase textures and rounded plagioclase megacrysts in MMEs. Compositions of plagioclases (An33-An60), hornblendes (Mg#=0.77-1.0) and biotites (Mg#=0.61-0.63) of MMEs are slightly distinct or similar to those of host rocks (An12-57; hbl Mg#=0.63-1.0; Bi Mg#=0.50-0.69), which suggest partial to complete equilibration during mafic-felsic magma interactions.The felsic host rocks have SiO2 between 60 and 76 wt% and display low to slightly medium-K tholeiitic to calc-alkaline and peraluminous to slightly metaluminous characteristics. Chondrite-normalized rare-earth element (REE) patterns are fractionated (Lacn/Lucn=1.5-7.3) with pronounced negative Eu anomalies (Eu/Eu*=0.46-1.1). Initial εNd(i) values vary between −3.1 and 1.6, initial 87Sr/86Sr values between 0.7056 and 0.7067.Compared with the host rocks, the MMEs are characterized by relatively high Mg-number of 22-52, low contents of SiO2 (53-63 wt%), low ASI (0.7-1.1) and low to medium-K tholeiitic to calc-alkaline, metaluminous to peraluminous composition. Chondrite-normalized REE patterns are relatively flat [(La/Yb)cn=1.4-3.9; (Tb/Yb)cn=0.9-1.5] and show small negative Eu anomalies (Eu/Eu*=0.63-1.01). Isotope signatures of these rocks (87Sr/86Sr(i)=0.7054-0.7055; εNd(i)=-1.0 to 1.9) are largely similar to the host rocks. Gabbroic diorite enclaves have relatively low contents of SiO2, ASI; high Mg#, CaO, Al2O3, TiO2, P2O5, Sr and Nb concentrations compared to dioritic and tonalitic enclaves.The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, interacted with a crustal melt that originated from dehydration melting of the mafic lower crust at deep crustal levels. The existence of compositional and textural disequilibrium and the nature of chemical and isotopic variation in these rock types indicate that magma mixing/mingling between an evolved mafic and a granitic magma was involved in their genesis. Microgranular enclaves are thus interpreted to be globules of a more mafic magma probably from an enriched lithospheric mantle source. Al-in-amphibole estimates the pluton emplacement at ca. 0.3-3.8 kbar, and therefore, magma mixing and mingling must have occurred at 3.8 kbar or below this level.  相似文献   

15.
The chemical compositions of rock-forming minerals have been determined for both altered and least-altered igneous rocks spatially associated with numerous mineralized zones (Nucleus Au–Bi–Cu–As deposit, Revenue Au ± Cu and Stoddart Cu–Mo ± W mineral occurrences, and Laforma Au–Ag deposit) across the Freegold Mountain area, Yukon, Canada. Within the study area, K-feldspar has a narrow compositional range (89.4–91% Or), whereas plagioclase spans a wide range (4.4–70.07% An). In all of the investigated samples, T Ab = T An = T Or, suggesting that magmatic equilibrium between the coexisting plagioclase and K-feldspar was maintained. Igneous amphibole phenocrysts from hypabyssal dikes are typically calcic, whereas the Stoddart Cu–Mo ± W, Laforma Au–Ag, and Goldy Au mineralization are associated with Mg-enriched primary amphibole of edenite composition, and Au–Bi–Cu–As mineralization from Nucleus is related to Al-enriched primary amphibole of ferropargasite composition. Primary biotite phenocrysts across the Freegold Mountain area re-equilibrated with oxidized magma (f(O2) values between 10–13 and 10–11.5 bars, lying between the Ni/NiO and the magnetite/haematite buffers). However, biotite and amphibole phenocrysts from Stoddart, Goldy, Laforma, and the Highway zones crystallized from a more oxidized magma, as indicated by their elevated X Mg up to 0.65, relative to biotite and hornblende from Nucleus and Revenue characterized by a lower X Mg (typically < 0.50). This suggests that various sources and (or) rapid emplacement were involved in magma genesis, as further supported by the considerable variation of pressure (1.8–7.3 kb) of amphibole crystallization and of the total Al content in least-altered biotite (2.6–2.9 afu) within the Freegold Mountain area. Biotite and apatite equilibrated within the T range of 520–780°C, consistent with temperatures of equilibration between ilmenite and magnetite, and their compositions indicate that they formed from an oxidized I-type magma. Magma differentiated by fractional crystallization (indicated by the presence of normally zoned plagioclase with Ca-rich cores and Na-enriched outer rims) and multiple magma mixing (supported by the presence of reversed zoned plagioclase and coexistence of normally and reversely zoned plagioclase). Lower X Mg biotite associated with the mineralized (Cu–Mo ± W) potassic alteration incorporated more F and Cl relative to least-altered biotite with higher X Mg. In both Nucleus and Revenue Au–Cu mineralizations, secondary biotite composition varies with respect to the associated alteration mineral assemblages. Although secondary biotite in the skarn re-equilibrated with F-poor fluids, secondary biotite from the pervasive biotitization is related to F- and Cl-enriched fluids, and secondary biotite from the phyllitic zone is related to F-, Cl-, and Mg-depleted fluids, thus consistent with a change in mineralizing fluid composition during mineralization.  相似文献   

16.
ABSTRACT

Mashhad granitoids and associated mafic microgranular enclaves (MMEs), in NE Iran record late early Mesozoic magmatism, was related to the Palaeo-Tethys closure and Iran-Eurasia collision. These represent ideal rocks to explore magmatic processes associated with Late Triassic closure of the Palaeo-Tethyan ocean and post-collisional magmatism. In this study, new geochronological data, whole-rock geochemistry, and Sr–Nd isotope data are presented for Mashhad granitoids and MMEs. LA–ICP–MS U–Pb dating of zircon yields crystallization ages of 205.0 ± 1.3 Ma for the MMEs, indicating their formation during the Late Triassic. This age is similar to the host granitoids. Our results including the major and trace elements discrimination diagrams, in combination with field and petrographic observations (such as ellipsoidal MMEs with feldspar megacrysts, disequilibrium textures of plagioclase), as well as mineral chemistry, suggest that MMEs formed by mixing of mafic and felsic magmas. The host granodiorite is a felsic, high K calc-alkaline I-type granitoid, with SiO2 = 67.5–69.4 wt%, high K2O (2.4–4.2 wt%), and low Mg# (42.5–50.5). Normalized abundances of LREEs and LILEs are enriched relative to HREEs and HFSEs (e.g. Nb, Ti). Negative values of whole-rock εNd(t) (?3 to ?2.3) from granitoids indicate that the precursor magma was generated by partial melting of enriched lithospheric mantle with some contributions from old lower continental crust. In the MMEs, SiO2 (53.4–58.2 wt%) is lower and Ni (3.9–49.7 ppm), Cr (0.8–93.9 ppm), Mg# (42.81–62.84), and εNd(t) (?2.3 to +1.4) are higher than those in the host granodiorite, suggesting a greater contribution of mantle-derived mafic melts in the genesis of MMEs.  相似文献   

17.
Petrographic and geochemical features of the Cretaceous Yucheon granites and their mafic microgranular/magmatic enclaves (MMEs), SE Korea, reveal that the MMEs originated from magma mixing. Mesoscopic and microscopic features indicate that mechanical mixing operated heterogeneously to produce the MMEs with a wide range of sizes and textures. Chemical compositions of amphibole, biotite, and plagioclase rims of both the MMEs and host granites are almost identical, indicating that chemical homogenization took place to some extent after the mechanical mixing. Plagioclase cores, however, have various compositions depending on the host rocks and/or sampling locations, suggesting their sluggish re-equilibration. The MMEs are divided into Type A (low TiO2, very fine-grained, chilled margins) and Type B (high TiO2, fine- to medium-grained, no chilled margins). The lower TiO2 MMEs cooled more rapidly and interacted with granitic magma for a shorter period of time than the higher TiO2 MMEs. Additionally, the former are less enriched in HREEs than the latter. Zoned plagioclase has two zones of increased An content. These features are indicative of double injection events of mafic magma. A previous model explains the magma mixing as resulting from the generation of a slab window due to Kula-Pacific ridge subduction. The model cannot, however, explain the eastward younging of the granites in Korea, necessitating a new, more elaborate model of Cretaceous geodynamics and magmatism in East Asia.  相似文献   

18.
The results of field, petrographic and geochemical work of the granitoids of Hutti-Gurgunta area in the northern part of Eastern Dharwar Craton (EDC) is presented in this paper. This crustal section comprises polyphase banded to foliated TTG gneisses, middle amphibolite facies Gurgunta schist belt and upper greenschist facies Hutti schist belt and abundant granite plutons. The focus of the present study is mainly on basement TTG gneisses and a granite pluton (∼ 240 sq km areal extent), to discuss crustal accretion processes including changing petrogenetic mechanism and geodynamic setting. The TTGs contain quartz, plagioclase, lesser K-feldspar and hornblende with minor biotite while the granite contain quartz, plagioclase, K-feldspar and hornblende. Late stage alteration (chloritisation, sericitisation and epidotisation) is wide spread in the entire area. A huge synplutonic mafic body which is dioritic to meladioritic in composition injects the granite and displays all stages of progressive mixing and hybridization. The studied TTGs and granite show distinct major and trace element patterns. The TTGs are characterized by higher SiO2, high Al2O3, and Na2O, low TiO2, Mg#, CaO, K2O and LILE, and HFS elements compared to granite. TTGs define strong trondhjemite trend whilst granite shows calc-alkaline trend. However, both TTGs and granite show characteristics of Phanerozoic high-silica adakites. The granite also shows characteristics of transitional TTGs in its high LILE, and progressive increase in K2O with differentiation. Both TTGs and granite define linear to sub-linear trends on variation diagrams. The TTGs show moderate total REE contents with fractionated REE patterns (La/YbN =17.73–61.73) and slight positive or without any significant Eu anomaly implying little amount of amphibole or plagioclase in residual liquid. On the other hand, the granite displays poor to moderate fractionation of REE patterns (La/YbN = 9.06–67.21) without any significant Eu anomaly. The TTGs have been interpreted to be produced by low-K basaltic slab melting at shallow depth, whereas the granite pluton has been formed by slab melting at depth and these melts interacted with peridotite mantle wedge. Such changing petrogenetic mechanisms and geodynamic conditions explain increase in the contents of MgO, CaO, Ni and Cr from 2700 Ma to 2500 Ma granitoids in the EDC.  相似文献   

19.
顾枫华  章永梅  刘瑞萍  郑硌  孙玄 《岩石学报》2015,31(5):1374-1390
华北地台北缘乌拉山地区的沙德盖钾长花岗岩体中普遍发育以二长岩为主的暗色微粒包体,包体具塑性流变特征,与寄主岩的接触界线或为截然或为渐变过渡。岩相学观察表明,包体中发育多种反映岩浆混合作用的典型组构,如石英眼斑、环斑长石、镁铁质团块、钾长石巨晶的溶蚀、磷灰石的针柱状形貌、长石中的包体带以及钙长石的"针尖"结构等。造岩矿物的电子探针分析表明,岩浆混合在沙德盖岩体的形成中起了重要作用,寄主花岗岩浆主要来自下地壳,而暗色包体岩浆则主要为地幔来源。锆石LA-ICP-MS U-Pb同位素定年结果显示,沙德盖花岗岩及其暗色微粒包体的形成时代基本一致,分别为233.4±2.3Ma和229.7±1.5Ma(中三叠世),进一步佐证了该岩体是岩浆混合作用的产物。研究认为,当铁镁质岩浆与长英质岩浆混合时,早期基性岩浆的快速淬冷形成了边界清楚、具明显冷凝边且暗色矿物含量较高的包体;随着两种不同成分岩浆之间温差的减小以及组分的交换,进一步形成了颜色较浅、边界渐变过渡和无明显冷凝边的包体。  相似文献   

20.
松潘—甘孜造山带广泛分布着三叠纪花岗岩体,其成因对正确认识研究区花岗岩浆的动力学背景具有重要意义。地球化学分析表明,万里城岩体寄主花岗岩具有高的SiO2含量(69.43%~73.10%)和较高的全碱含量,具弱过铝质(A/CNK=1.01~1.12)特征,属于高钾钙碱性—钾玄岩系列I型花岗岩类。暗色微粒包体具较低的SiO2含量(52.85%~59.50%)和较高的Mg#值(45~63),为准铝质高钾钙碱性二长(闪长)岩。包体为典型的岩浆细粒结构,发育针状磷灰石、环带结构斜长石、瞳状石英、反鲍文序列的不平衡岩浆结构等。微量与稀土元素分析表明,包体起源于壳幔混合作用,是底侵的幔源玄武质岩浆与上覆壳源长英质岩浆混合的产物,混合的熔体经历了钛铁矿、黑云母等矿物的分离结晶,最终形成万里城暗色微粒包体。而寄主花岗岩则起源于纯的长英质陆壳,岩石具有较低的Mg#值(21~39)、中等的CaO/(MgO+TFeO)值、较高的K2O/Na2O和(Na2O+K2O)/(TFeO+MgO+TiO2)值等,指示源区主要为变杂砂岩类。综合区域地质资料,提出松潘—甘孜造山带内大规模花岗质岩体的形成主要受控于碰撞后伸展背景下的玄武质岩浆底侵加热。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号