首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文基于2001-2013年MODIS NDVI多时序数据,采用像元二分模型估算了洞庭湖流域植被覆盖度,分析了区域近13年来植被覆盖度的变化特征及趋势,并结合同期气象数据,阐明了植被覆盖度变化对气候因素的响应。结果表明:(1)近13年洞庭湖流域植被覆盖度的整体变化较为稳定,呈微弱减少趋势,速率为-0.3%/10a。(2)洞庭湖流域绝大部分区域植被覆盖状况良好,植被覆盖度呈自西向东递减趋势,高植被覆盖度及中高植被覆盖度占整个流域面积的88.63%,水体或低植被覆盖度及中低植被覆盖度仅占2.57%。(3)洞庭湖流域植被覆盖度变化趋势为北部强于南部、东部强于西部。流域内植被覆盖度极显著与显著减少的面积比例为5.30%、增加面积的比例为4.29%,植被覆盖度变化不显著占90.40%。该区域植被覆盖度变化受人为因素影响更大。  相似文献   

2.
《山地科学学报》2020,17(3):572-587
Glaciers in the northern Pakistan are a distinctive source of freshwater for the irrigation,drinking and industrial water supplies of the people living in those regions and downstream. These glaciers are under a direct global warming impact as indicated in many previous studies. In this study, we estimated the glacier dynamics in terms of Equilibrium Line Altitude(ELA), mass balance and the snout position variation using remote sensing data between 2001 and 2018. Six glaciers, having area≥ 20 km2 each, situated in the Chitral region(Hindukush Mountains) were investigated in this study. Digital Elevation Model(DEM) and available cloud-free continuous series of Landsat and Sentinel satellite images from minimum snow cover season were used to monitor the variability in the studied glaciers by keeping the status of glaciers in year 2001 as a reference. The annual climatic trends of mean temperature and total precipitation from Chitral weather station were detected using the nonparametric Mann-Kendall's test. Results revealed a general increase in the ELA, decrease in the glacier mass balance and the retreat of snout position.Average upward shift in the ELA for the entire study area and data period was ~345 ± 93 m at a rate of~13 m.a~(-1) from the reference year's position i.e.~4803 m asl. Estimated mean mass balance for the entire study area indicated a decline of-0.106 ± 0.295 m w.e. a~(-1). Periods of snout retreat and advance in different glaciers were found but the mean value over the entire study area was a retreat of-231 ± 140 m.No obvious relationship was found between the glacier variation trends and the available gauged climatic data possibly due to the presence of debris cover in ablation zones of all the studied glaciers which provides insulation and reduces the immediate climatic effects.  相似文献   

3.
在理论分析的基础上,利用试验结果模拟分析单轴压力作用下含裂隙恐龙化石断裂损伤过程。在FLAC3D中采用FISH语言编写了基于体元分析的计算程序,采用弹脆性本构模型,分析了试验过程中恐龙化石的裂纹萌生→扩展→贯通规律和裂隙化石的断裂损伤机制。在单轴压缩作用下,含有裂隙的恐龙化石试件的破坏过程主要分三个阶段:即线性变形阶段、非线性变形阶段和软化阶段,当载荷超过应变峰值强度后,化石内部将生成大量新的诱导裂隙,导致化石内部结构发生剧烈变化。值得注意的是,恐龙化石峰后的强度软化过程非常不稳定,峰值附近的材料力学行为对化石试件内部缺陷的分布十分敏感。试验表明,有裂隙恐龙化石的抗压强度值比无裂隙恐龙化石的抗压强度值小30%,最终的残余抗压强度也略小,在加载应力作用下,相比不含内部裂隙的恐龙化石,内含裂隙的恐龙化石其内部裂隙会迅速大量扩展,加重了恐龙化石的风化程度和破坏速度。  相似文献   

4.
2001-2010年蒙古国MODIS-NDVI时空变化监测分析   总被引:2,自引:0,他引:2  
利用2001 - 2010年的空间分辨率为1km的MODIS-NDVI数据,以蒙古国为研究区域,利用最大值合成法、均值法与差值法、一元线性回归等方法,分析了不同季节下植被覆盖的年内变化、年际变化与波动趋势、空间变化特征.结果表明:M(ODIS- NDVI对植被的生长变化具有较高的敏感度,可有效应用于植被生态的评估和监测...  相似文献   

5.
The Radial Sand Ridges(RSRs) area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently, in which the special geometry feature and moving stationary tidal system result in complex storm-induced hydrodynamic processes, especially the tide-surge interactions. We studied a rare weather event influenced simultaneously by an extratropical cyclone EX1410 and Typhoon Vongfong as an example to investigate the characteristics of storm surges, wave-surge, and tide-surge interaction in the RSRs area, and applied a high-resolution integrally-coupled ADCIRC+SWAN model, in which the meteorological forcing inputs are simulated by the WRF-ARW model. The model is validated by records from 4 tide gauges and 2 wave buoys along the Yellow Sea coast. Results show that the tide-surge interactions are of considerable regional heterogeneousness. The surge curves at Lüsi(in south RSRs) and Jianggang(in middle RSRs) have abrupt falls near the time of low tide, where the peak occurrence time of interaction residuals tend to shift towards the mid-ebb period. Significant increase of bed shear stress in shallow waters was proved the dominant factor to affect the tide-surge interaction in broad tidal flats of the RSRs area. Differently, the interaction pattern in the Xiyang Trough(in north RSRs), showed a unique rising in mid-flood period due to the phase advances of real surge waves in relatively deep waters. Therefore, we suggested to the local flood risk management that the tide-surge interaction tends to alleviate the flooding risk in the RSRs area around the time of high tide, but aggravate the risk on the rising tide in the Xiyang Trough and on the falling tide in large-scale tidal flats of the southern RSRs area.  相似文献   

6.
北美地区大湖水位的变化研究   总被引:1,自引:0,他引:1  
在数十年来大湖水位变化历史记录背景下,考察了近年来大湖处于低水位的问题,并且比较了下游湖区水位最近的回升与上游湖区持续的低水位状况.探讨了气候变化对大湖水位的潜在影响。  相似文献   

7.
京津冀地区NDVI变化及气候因子驱动分析   总被引:3,自引:0,他引:3  
植被覆盖动态监测及与气候变化的响应,是陆地生态系统研究的重要内容。本文以2001-2013年间京津冀地区MOD13A 3月合成NDVI数据,结合生长季的降水和气温资料,运用偏相关和复相关分析、趋势分析方法,研究了该区域NDVI的变化特征和空间分布,以及其区域植被覆盖变化的气候驱动力。结果表明,该区域NDVI最大值在13a间缓慢增加,植被覆盖呈现改善趋势;NDVI和生长季降雨量及平均气温的平均偏相关系数分别为0.20和-0.14,表明在年际变化水平上,京津冀地区NDVI总体与降水量呈正相关,与平均气温呈负相关,且降水对NDVI的影响大于温度对NDVI的影响。对植被覆盖驱动分区得出,降水和气温驱动型占区域面积的5.68%;单独降水驱动型和气温驱动型分别占4.51%、0.18%;区域内植被覆盖变化主要受非气候因子驱动型为主,所占比例为89.63%,表明人类活动对植被变化的影响巨大。  相似文献   

8.
As a key factor limiting primary productivity in marine ecosystem, dissolved iron(DFe) export from fluvial systems has increased recently. There is particular concern about discharges of DFe during extreme flooding, when they are thought to increase considerably. An extreme flood event that caused inundation of extensive areas of Far Eastern Russia and Northeastern China occurred in the basin of the Amur River during summer and autumn 2013. During this event, water samples were collected in the middle reaches of the Amur River and the lower reaches at Khabarovsk City and analyzed for DFe concentrations and other aquatic parameters. The results show that the average DFe concentrations in the middle reaches of the Amur River(right bank) and at Khabarovsk were 1.11 mg/L and 0.32 mg/L, respectively, during the extreme flood in 2013. The total discharge of DFe during the flood event was 6.25 × 104 t. The high discharge of DFe during the flood reflects the elevated discharge of the river, hydrologically connected riparian wetlands, vast quantities of terrestrial runoff, and flood discharges from the Zeya and Bureya reservoirs. These results show that long-term monitoring is needed to identify and assess the impacts of DFe transport on the downstream reaches, estuarine area, and coastal ecosystems of the Amur River.  相似文献   

9.
In the high mountain oligotrophic Seven Rila Lakes (2 095–2 535 m a.s.l.) bacterial abundance was recorded in July and September 2006. In July, bacterial abundance (average (3.32±2.5)×105 cell/ml) in the lakes correlated negatively with elevation, while in September (average (26.39±7.1)×105 cell/ml) this pattern was altered and the greatest abundance of bacteria occurred at the highest ((39.05±1.5)×105 cell/ml) and the lowest ((30.63±6.0)×105 cell/ml) elevated lakes. Regression analyses suggested that the principal factor controlling bacterial abundance, in both July and September, was inorganic nitrogen (NO3-N and NH4-N; R 2=0.70, P<0.05). Other major regulating factors were temperature (R 2=0.66, P<0.03) in July and filter-feeding zooplankton (R 2=0.95, P<0.01) in September. All factors, except NO3-N, had a positive effect on bacterial abundance.  相似文献   

10.
In the high mountain oligotrophic Seven Rila Lakes (2 095–2 535 m a.s.l.) bacterial abundance was recorded in July and September 2006. In July, bacterial abundance (average (3.32±2.5)×105 cell/ml) in the lakes correlated negatively with elevation, while in September (average (26.39±7.1)×105 cell/ml) this pattern was altered and the greatest abundance of bacteria occurred at the highest ((39.05±1.5)×105 cell/ml) and the lowest ((30.63±6.0)×105 cell/ml) elevated lakes. Regression analyses suggested that the principal factor controlling bacterial abundance, in both July and September, was inorganic nitrogen (NO3-N and NH4-N; R2=0.70, P0.05). Other major regulating factors were temperature (R2=0.66, P0.03) in July and filter-feeding zooplankton (R2=0.95, P0.01) in September. All factors, except NO3-N, had a positive effect on bacterial abundance.  相似文献   

11.
文章通过膨胀土的分布、成因类型、成分和结构特征及物理、力学性质的分析 ,证实膨胀土并非是理想的持力层  相似文献   

12.
Based on daily maximum and minimum temperatures at 18 meteorological stations in the Qilian Mountains and Hexi Corridor between 1960 and 2013, temporal and spatial variations in extreme temperatures were analysed using linear trends, ten-point moving averages and the Mann-Kendall test. The results are as follows: The trends in the majority of the extreme temperature indices were statistically significant, and the changes in the extreme temperatures were more obvious than the changes in the extreme values. The trends were different for each season, and the changes in rates and intensities in summer and autumn were larger than those in spring and winter. Unlike the cold indices, the magnitudes and trends of the changes in the warm indices were larger and more significant in the Hexi Corridor than in the Qilian Mountains. Abrupt changes were detected in the majority of the extreme temperature indices, and the extreme cold indices usually occurred earlier than the changes in the extreme warm indices. The abrupt changes in the extreme temperatures in winter were the earliest among the four seasons, indicating that these temperature changes were the most sensitive to global climate change. The timing of the abrupt changes in certain indices was consistent throughout the study area, but the changes in the cold indices in the Hexi Corridor occurred approximately four years before those in the Qilian Mountains. Similarly, the changes in the warm indices in the western Hexi Corridor preceded those of the other regions.  相似文献   

13.
The aim of this study was to better understand the mechanisms of regional climate variation in mountain ranges with contrasting aspects as mediated by changes in global climate. It may help predict trends of vegetation variations in native ecosystems in natural reserves. As measures of climate response, temperature and precipitation data from the north, east, and south-facing mountain ranges of Shennongjia Massif in the coldest and hottest months(January and July), different seasons(spring, summer, autumn, and winter) and each year were analyzed from a long-term dataset(1960 to 2003) to tested variations characteristics, temporal and spatial quantitative relationships of climates. The results showed that the average seasonal temperatures and precipitation in the north, east, and south aspects of the mountain ranges changed at different rates. The average seasonal temperatures change rate ranges in the north, east, and south-facing mountain ranges were from –0.0210℃/yr to 0.0143℃/yr, –0.0166℃/yr to 0.0311℃/yr, and –0.0290 ℃/yr to 0.0084℃/yr, respectively, and seasonal precipitation variation magnitude were from –1.4940 mm/yr to 0.6217 mm/yr, –1.6833 mm/yr to 2.6182 mm/yr, and –0.8567 mm/yr to 1.4077 mm/yr, respectively. The climates variation trend among the three mountain ranges were different in magnitude and direction, showing a complicated change of the climates in mountain ranges and some inconsistency with general trends in global climate change. The climate variations were significantly different and positively correlated cross mountain ranges, revealing that aspects significantly affected on climate variations and these variations resulted from a larger air circulation system, which were sensitive to global climate change. We conclude that location and terrain of aspect are the main factors affecting differences in climate variation among the mountain ranges with contrasting aspects.  相似文献   

14.
The multi-model assessment of glaciohydrological regimes can enhance our understanding of glacier response to climate change. This improved knowledge can uplift our computing abilities to estimate the contributing components of the river discharge. This study examined and compared the hydrological responses in the glacier-dominated Shigar River basin(SRB) under various climatic scenarios using a semi-distributed Modified Positive Degree Day Model(MPDDM) and a distributed Glacio-hydrological Degree-day Model(GDM). Both glacio-hydrological models were calibrated and validated against the observed hydro-meteorological data from 1988-1992 and 1993-1997. Temperature and precipitation data from Shigar and Skardu meteorological stations were used along with field estimated degree-day factor, temperature, and precipitation gradients. The results from both models indicate that the snow and ice melt are vital contributors to sustain river flow in the catchment. However, MPDDM estimated 68% of rain and baseflow contribution to annual river runoff despite low precipitation during the summer monsoon, while GDM estimated 14% rain and baseflow contribution. Likewise, MPDDM calculated 32%, and GDM generated 86% of the annual river runoff from snow and ice melt. MPDDM simulated river discharge with 0.86 and 0.78 NSE for calibration and validation, respectively. Similarly, GDM simulated river discharge with improved accuracy of 0.87 for calibration and 0.84 NSE for the validation period. The snow and ice melt is significant in sustaining river flow in the SRB, and substantial changes in melt characteristics of snow and ice are expected to have severe consequences on seasonal water availability. Based on the sensitivity analysis, both models' outputs are highly sensitive to the variation in temperature. Furthermore, compared to MPDDM, GDM simulated considerable variation in the river discharge in climate scenarios, RCP4.5 and 8.5, mainly due to the higher sensitivity of GDM model outputs to temperature change. The integration of an updated melt module and two reservoir baseflow module in GDM is anticipated to advance the representation of hydrological components, unlike one reservoir baseflow module used separately in MPDDM. The restructured melt and baseflow modules in GDM have fundamentally enriched our perception of glacio-hydrological dynamics in the catchment.  相似文献   

15.
川滇地区2010~2013年重力变化及重力网的地震监测能力   总被引:1,自引:0,他引:1  
研究了当前川滇地区重力网的分形特征,发现其分形维数为1.43~1.62,对应格网距为30~60km,具备了监测Ms5.0级以上地震的能力。选择20′(约37km)的格网间距,对研究区域内2010~2013年的重力变化数据进行格网化,并分析重力变化与地震的关系。虽然经历了芦山Ms7.0级地震的能量释放,但是龙门山断裂带西南段与鲜水河断裂带东南段交叉地带仍然存在较强重力变化,对该区域的震情需继续加强监测。  相似文献   

16.
《山地科学学报》2020,17(8):1989-2000
Environmental variables play a crucial role in shaping vegetation structure,mainly in mountainous ecosystems.Different studies have attempted to identify the environment-vegetation relationship of Conifer Dominating Forests(CDF) worldwide.However,due to differences in local climate and soil composition,different environmental drivers can be found.By applying multivariate analysis techniques,this study investigated the vegetation-environment relationship of CDF of Indus Kohistan in northern Pakistan.Our results showed that CDF of Indus Kohistan are distributed in five distinct ecological groups,which are dominated by different trees and understory species.A total of 7 trees and 71 understory species were recorded from the sampling sites.Cedrus deodara was the leading species among four groups,having the highest importance value(IV),density and basal area.Group I was dominated by Pinus wallichiana with the second highest importance value,density and basal area.In addition,elevation,slope,maximum water holding capacity(MWHC),soil moisture(SM),total organic matter(TOM),sodium,phosphorus and nickel showed highly significant influence on composition and distribution pattern of Indus Kohistan vegetation.Therefore,this study shows a new evidence of vegetation-environment relationship,pointing out specific drivers of vegetation structure in CDF of Indus Kohistan region in northern Pakistan.  相似文献   

17.
In Pakistan,the solar analogue has been addressed but its surface geographical parameterization has given least attention.Inappropriate density of stations and their spatial coverage particularly in difficult peripheral national territories,little or no solar radiation data,non-satisfactory sunshine hours data,and low quality of ground observed cloud cover data create a situation in which the spatial modeling of Extraterrestrial Solar Radiation(ESR) and its ground parameterization got sufficient scope.The D...  相似文献   

18.
19.
Landsat satellite images were used to map and monitor the snow-covered areas of four glaciers with different aspects(Passu: 36.473°N, 74.766°E;Momhil: 36.394°N, 75.085°E; Trivor: 36.249°N,74.968°E; and Kunyang: 36.083°N, 75.288°E) in the upper Indus basin, northern Pakistan, from 1990-2014. The snow-covered areas of the selected glaciers were identified and classified using supervised and rule-based image analysis techniques in three different seasons. Accuracy assessment of the classified images indicated that the supervised classification technique performed slightly better than the rule-based technique. Snow-covered areas on the selected glaciers were generally reduced during the study period but at different rates. Glaciers reached maximum areal snow coverage in winter and premonsoon seasons and minimum areal snow coverage in monsoon seasons, with the lowest snow-covered area occurring in August and September. The snowcovered area on Passu glacier decreased by 24.50%,3.15% and 11.25% in the pre-monsoon, monsoon and post-monsoon seasons, respectively. Similarly, the other three glaciers showed notable decreases in snow-covered area during the pre-and post-monsoon seasons; however, no clear changes were observed during monsoon seasons. During pre-monsoon seasons, the eastward-facing glacier lost comparatively more snow-covered area than the westward-facing glacier. The average seasonal glacier surface temperature calculated from the Landsat thermal band showed negative correlations of-0.67,-0.89,-0.75 and-0.77 with the average seasonal snowcovered areas of the Passu, Momhil, Trivor and Kunyang glaciers, respectively, during pre-monsoon seasons. Similarly, the air temperature collected from a nearby meteorological station showed an increasing trend, indicating that the snow-covered area reduction in the region was largely due to climate warming.  相似文献   

20.
武汉城市化过程中的土地利用变化对其湖泊生态系统产生了一系列负面影响,深入研究并分析其影响的空间非平稳性对优化武汉城市化建设和环境保护规划极具现实意义。本文运用景观生态学理论和地理加权回归建模方法,分别构建城市化测度指标和多种类型景观格局指标,衡量武汉城市化进程对于湖泊特征、景观格局的影响,从而揭示了1996~2013年间武汉城市化进程与湖泊景观格局之间的空间非平稳性关系,结果表明:1武汉城市化进程对其不同地理区域的湖泊景观格局影响存在差异,具体表现为城市化强度越大的地区,其引起并解释湖泊景观格局变化的能力越强;2在武汉市大部分地区(超过其总面积的70%),尤其集中在中部及其周边地区,城市化与湖泊景观面积、密度、连通度、斑块分维数的变化均存在负相关,且具有呈方向性的梯度变化趋势。3在某些有针对性保护的区域,如北部黄陂区,景观面积、景观连通度、斑块分维数与城市化强度指数呈现出正相关。针对上述特征本研究提出武汉市湖泊防治的对策和建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号