首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
The Gabbro Akarem (Late Precambrian) intrusion is concentrically zoned with a dunite core surrounded by lherzolite–clinopyroxenite enveloped by olivine–plagioclase hornblendite and plagioclase hornblendite. Cu–Ni–PGE mineralization is closely associated with peridotite, especially in the inner, olivine-rich core (dunite pipes) where net-textured and massive sulfides (pyrrhotite, pentlandite, chalcopyrite) are found in association with Al–Mg-rich spinel and Cr-magnetite. Primary magmatic textures are well preserved; however, deformation and mobilization due to shearing are locally observed. Platinum-group minerals (PGM) documented from the deposit are: merenskyite (PdTe2) and michenerite (PdTeBi), as well as palladian bismuthian melonite (Ni,Pd) (Te,Bi)2. These minerals occur in intimate association with hessite (Ag2Te) and electrum (Au0.65Ag0.31Bi0.04) in two distinct textural positions: (1) as inclusions in pyrrhotite, pentlandite, and rarely chalcopyrite and (2) at sulfide–silicate grain boundaries and on microfractures in base-metal sulfides (BMS) and olivine associated with serpentine and secondary magnetite. Textural features suggest that PGM were exsolved from monosulfide solid solution over a wide range of temperatures. Late-stage, low-temperature hydrothermal solutions led to redistribution of PGE. Mineralized samples show Ni/Cu ratios ranging from 0.2 to 2 with an average of 1.0. The (Pt + Pd + Rh)/(Os + Ir + Ru) ratio is generally >6 in most samples, and Os, Ru, and Ir are below the detection limit (2 ppb). The PGE contents show positive correlation with S only at low sulfur contents. The PGE patterns of Gabbro Akarem are similar to those of Alaskan-type deposits. Compared with stratiform deposits, Gabbro Akarem is depleted in PGE. The consistently low PGE contents of the mineralization and their uniform distribution in the ultramafic rocks despite the high sulfur content of the rock is attributed to rapid crystallization of sulfides in a highly dynamic environment. Received: 3 November 1999 / Accepted: 29 July 2000  相似文献   

2.
We report the first Re-Os data on gold-associated arsenopyrite from mesothermal gold-quartz veins in the ancient Egyptian Fawakhir–El Sid gold mining district in the central Eastern Desert. This mining district has an ~5000-year-old history and is displayed in the Turin Papyrus Map (about 1150 BC), which is widely acclaimed as the world’s oldest geographic map, as well as the oldest geologic and mine map. The Fawakhir–El Sid district is part of a regional NNW-trending shear corridor (15 km wide) that hosts several other historic gold mines associated with left-lateral wrench structures and related granite intrusions. Vein-style gold mineralization is hosted within and at the margin of an I-type and magnetite-series monzogranite, the Fawakhir granite intrusion, and a Pan-African (~740 Ma) ophiolite sequence. The ore mineralogy of the mineralized quartz veins includes pyrite-arsenopyrite-pyrrhotite-sphalerite-galena-chalcopyrite-electrum plus a number of tellurides of Ag, Au, and Bi. The 187Re/188Os versus 187Os/188Os regression on 5 points of arsenopyrite gives an age of 601 ± 17 Ma with an initial 187Os/188Os of 0.24 ± 0.07 (2 σ; MSWD = 17). This age coincides within error with the U-Pb age on zircon from the Fawakhir monzogranite (598 ± 3 Ma). The age coincidence and the hydrothermal Te and Bi metal signature suggest a foremost role of granite-related fluids in the quartz-vein system.  相似文献   

3.
Strongly deformed volcaniclastic metasediments and ophiolitic slices hosting the Sukari gold mineralization display evidence of a complex structural evolution involving three main ductile deformational events (D1–D3). D1 produced ENE-trending folds associated with NNW-propagating thrust slices and intrusion of the Sukari granite (689 ± 3 Ma). D2 formed a moderately to steeply dipping, NNW-trending S2 foliation curved to NE and developed arcuate structure constituting the Kurdeman shear zone (≤ 595 Ma) and East Sukari imbricate thrust belt. Major NE-trending F2 folds, NW-dipping high-angle thrusts, shallow and steeply plunging mineral lineation and shear indicators recorded both subhorizontal and subvertical transport direction during D2. D3 (560–540 Ma) formed NNE-trending S3 crenulation cleavage, tight F3 folds, Sukari Thrust and West Sukari imbricate thrust. The system of NW-trending sinistral Kurdeman shear zone (lateral ramps and tear faults) and imbricate thrusts (frontal ramps) forming the actuate structure developed during SE-directed thrusting, whereas the prevailing pattern of NNE-trending dextral Sukari shear zone and imbricate thrusts forming Sukari thrust duplex developed during NE-directed tectonic shearing. Sukari granite intruded in different pluses between 689 and 540 Ma and associated with at least four phases of quartz veins with different geometry and orientation. Structural analysis of the shear fabrics indicates that the geometry of the mineralized quartz veins and alteration patterns are controlled by the regional NNW- and NE-trending conjugate zones of transpression. Gold-bearing quartz veins are located within NNW-oriented sinistral shear zones in Kurdeman gold mine area, within steeply dipping NW- and SE dipping thrusts and NE- and NS-oriented dextral and sinistral shear zones around Sukari mine area, and along E-dipping backthrusts and NW-SE and N-S fractures in Sukari granite. The high grade of gold mineralization in Sukari is mainly controlled by SE-dipping back-thrusts branched from the major NW-dipping Sukari Thrust. The gold mineralization in Sukari gold mine and neighboring areas in the Central Eastern Desert of Egypt is mainly controlled by the conjugate shear zones of the Najd Fault System and related to E-W directed shortening associated with oblique convergence between East and West Gondwana.  相似文献   

4.
The application of various geophysical tools with different responses succeeded in fixing U-mineralization in Wadi Eishimbai area. The area was studied using detailed ground spectrometric, magnetic, and filtered very low-frequency electromagnetic (VLF-EM) surveys. The interpretation of the obtained spectrometric maps clearly reflects the sharp increase of equivalent uranium (eU) content. Meanwhile, K and Th contents show sharp decreases. The eU/equivalent thorium (eTh) ratio correlates positively with eU concentrations and negatively with eTh concentrations, indicating an increase in U potentiality than the surrounding granite. The N?CS shear zone displays an eU content ranging from 20 to 140?ppm. The ENE-trending lamprophyre is characterized by elongated uranium anomalies trending in the E?CW direction, with values >90?ppm. Equivalent uranium content of the brecciated granite attains values up to 700?ppm. The ground magnetic and VLF-EM surveys played important roles in providing structural information which are proven useful in geological mapping and mineral exploration for the discovery of uranium mineralization in the study area. This study follows the expected subsurface extension of the Sela shear zone under Wadi sediments. The ground total magnetic intensity map shows a relatively narrow and an elongated shape for the lamprophyre anomaly extending for about 600?m in the Wadi toward the western direction. VLF-EM contour maps of the two used frequencies (17.1 and 28.5?kHz) show excellent agreement, indicating that the shear zone is distinguished with slightly strong conductivity westwards as an extension of the main shear zone. It is elongated in an ENE?CWSW trend and extends in the western direction, referring to the existence of conductive materials. Most of the NW/SE-trending faults cause sudden changes in the magnetic and VLF-EM contour spacing over an appreciable distance, which suggests a discontinuity in depth due to their left-lateral strike-slip displacements. The interpreted faults, with an ENE?CWSW trend representing the main trend of Sela shear zone through which hydrothermal solutions flowed, cause high alteration and uranium mineralization.  相似文献   

5.
This paper describes various problems in carrying out geochemical prospecting under the conditions that prevail in the Eastern Desert of Egypt. Conclusions are based on four years experience in geochemical exploration in the Eastern Desert, including studies of over 25,000 geochemical samples. In prospecting for ore deposits in stony and sandy deserts, different kinds of geochemical survey techniques can be successfully applied. In carrying out regional geochemical surveys, stream-sediment sampling in combination with panning of heavy concentrates may be used with a considerable degree of success. The method of the cold extraction of metals produces best results when the alluvial silt and argillaceous fraction (minus 0.075 mm) is sampled. Spectrographic analysis, on the other hand, provides dependable data when the minus 1-plus 0.25-mm fractions are sampled. It is established as a fact that sieving-out of the minus 0.25-mm fraction helps to get rid of aeolian sands which otherwise “dilute” anomalies.In the localities where colluvium is mixed with aeolian sand, sampling of the minus 1-plus 0.25-mm fraction considerably increases the contrast of anomalies (by 3.7 times for Sn, 3.8 for Mo, and 1.5 for Cu) and enlarges their size (4 times for Sn, 2.6 for Mo, and 2.5 for Cu). A possibility of forming of “false” anomalies in colluvium, resulting from the secondary concentration of certain heavy minerals resistant to weathering (e.g. Sn, W, Nb, Ta, Zr, etc.) was proven. This should be taken into consideration while carrying out geochemical prospecting in similar conditions.  相似文献   

6.
Serpentinites in the Eastern Desert (ED) of Egypt represent integral components of the ophiolites. Metamorphic textures of the serpentinites preserve the complex mineralogical evolution from primary peridotite through metamorphism, and late-stage hydrothermal alteration. Two textural types are distinguished in the olivines of the present serpentinized peridotites, namely (a) highly-strained olivine grains with kink bands, as in the deformed mantle tectonites from ophiolites, and (b) non-strained grains. The latter may represent recrystallized crystals during later thermal metamorphic events due to the intrusion of granite. On the basis of X-ray diffraction analysis, antigorite is the main serpentine minerals with lesser chrysotile and lizardite which indicates that serpentinites were formed under prograde metamorphism. Relict primary minerals of the serpentinites are Cr-spinel, olivine and pyroxene. Chrome spinel relicts have high Cr# (0.60–0.80), whereas primary olivines are Mg-rich nature (Fo = 89–96). Geochemical compositions of serpentinites indicate that they formed not at mid-ocean ridges but at spreading centers associated with subduction zones and this could have happened in a supra-subduction zone either in the fore-arc or back-arc environments. Mineral compositions of primary chrome spinels and olivines are similar to those of modern fore-arcs. High Cr# in the relict chrome spinels and Fo in the primary olivines of serpentinites indicate that they are residual after extensive partial melting and originated by sea-floor spreading during subduction initiation.  相似文献   

7.
Spinel is widespread in the ultramafic core rocks of zoned late Precambrian mafic–ultramafic complexes from the Eastern Desert of Egypt. These complexes; Gabbro Akarem, Genina Gharbia and Abu Hamamid are Precambrian analogues of Alaskan-type complexes, they are not metamorphosed although weakly altered. Each intrusion is composed of a predotite core enveloped by pyroxenites and gabbros at the margin. Silicate mineralogy and chemistry suggest formation by crystal fractionation from a hydrous magma. Relatively high Cr2O3 contents are recorded in pyroxenes (up to 1.1 wt.%) and amphiboles (up to 1.4 wt.%) from the three plutons. The chrome spinel crystallized at different stages of melt evolution; as early cumulus inclusions in olivine, inclusions in pyroxenes and amphiboles and late-magmatic intercumulus phase. The intercumulus chrome spinel is homogenous with narrow-range of chemical composition, mainly Fe3+-rich spinel. Spinel inclusions in clinopyroxene and amphibole reveal a wide range of Al (27–44 wt.% Al2O3) and Mg (6–13 wt.% MgO) contents and are commonly zoned. The different chemistries of those spinels reflect various stages of melt evolution and re-equilibration with the host minerals. The early cumulus chrome spinel reveals a complex unmixing structures and compositions. Three types of unmixed spinels are recognized; crystallographically oriented, irregular and complete separation. Unmixing products are Al-rich (Type I) and Fe3+-rich (Type II) spinels with an extensive solid solution between the two end members. The compositions of the unmixed spinels define a miscibility gap with respect to Cr–Al–Fe3+, extending from the Fe3+–Al join towards the Cr corner. Spinel unmixing occurs in response to cooling and the increase in oxidation state. The chemistry and grain size of the initial spinel and the cooling rate control the type of unmixing and the chemistry of the final products. Causes of spinel unmixing during late-magmatic stage are analogous to those in metamorphosed complexes. The chemistry of the unmixed spinels is completely different from the initial spinel composition and is not useful in petrogenetic interpretations. Spinels from oxidized magmas are likely to re-equilibrate during cooling and are not good tools for genetic considerations.  相似文献   

8.
The Nuweibi albite granite is one of 14 known Sn-Ta-Nb bearing granitoids in the Eastern Desert region of Egypt. The granite is a highly leucocratic, albite-rich rock with accessory columbite-tantalite, cassiterite, microlite and ixiolite as well as topaz, garnet and white mica. Ages of 450–600 Ma were obtained from zircons by the 207Pb/206Pb evaporation method. Great uncertainty is caused by the small size and poor quality of the grains, but the precision is sufficient to indicate that the granite is late- or postorogenic with respect to the Panafrican orogeny. The Nuweibi granite is divided into a western and an eastern part by a regional fault. Both parts of the granite are compositionally similar but there are important differences and a clear compositional gap between them, so they are considered separate facies of an intrusive complex. The eastern part of the granite is more highly mineralized, has higher modal albite contents and higher Ta/Nb ratios, both in the whole rock and in the ore minerals. It is suggested that the two parts of the granite evolved from a common source and were emplaced sequentially, the eastern part representing a later, more fractionated magma. Textural evidence strongly suggests that the granite has a magmatic origin overall, but disturbance of geochemical trends at the whole-rock scale and at the scale of zoning profiles in individual grains of columbite-tantalite indicate post-magmatic overprinting. By analogy with other Ta-bearing albite granites, the sodic bulk composition of the Nuweibi granite can be explained by fluorine enrichment in the magma. Fluorine contents in the magma were high enough to stabilize topaz, and muscovites contain 2–4 wt.%. F. However, whole-rock F contents are low. We speculate that the low Ca, Al and P contents of the magma prevented abundant F-bearing minerals to form and led to loss of fluorine to now-eroded roof rocks. Received: 8 November 1995 / Accepted: 10 June 1996  相似文献   

9.
10.
Ras Abda plutonic suite, North Eastern Desert of Egypt, consists predominantly of Neoproterozoic calc-alkaline older granites. Minor exposures of pink microgranite are occurring along Wadi Ras Abda within the older granites. Previous studies on this area demonstrated that the microgranite is altered in some parts and contains anomalous concentrations of rare metal elements (Zr, Th, and U). These altered and mineralized zones are re-assessed using field observations, chemical analysis, and by the application of various transmitted light and electron microscopic techniques. The rare metals exist as mineral segregation grew freely into open cavities of the microgranite and concordant with the NNE strike-slip fault movement. The mineralized zones contain an assemblage of secondary magnetite, zircon, uranothorite, columbite-(Mn), fergusonite-(Y), and allanite-(Ce). The extreme abundance of zircon in the mineralized zone, along with other evidence, indicates a hydrothermal origin of this zircon together with associated rare metals. The geochemical investigation and mass balance calculations revealed extreme enrichment of Zr, Th, U, Y, Nb, Ta, and REE. Post-magmatic hydrothermal alterations resulted in such pronounced chemical and mineralogical heterogeneity. The hydrothermal fluids are thought to be oxidizing, alkaline and of medium temperature (>?250 °C). The average contents of the elements Zr (1606 ppm), Th (1639 ppm), U (306 ppm), Nb (955 ppm), and REE (1710 ppm) in the mineralized microgranite reach sub-economic levels and could be a potential source of these elements.  相似文献   

11.
12.
The present work gives the results of the paleomagnetic investigations carried out on the Cretaceous Nubian Sandstone and associated volcanics and hematitic oolitic iron ores in the Eastern Desert of Egypt. The paleogeography of the Nubian Sandstone especially for the Eastern Desert is discussed in the light of the various geological data as well as the paleomagnetic results, both of which point to certain conceptions. The position of the paleoequator and paleolatitude 20° S were derived from the paleomagnetic data indicating that the Nubian Sandstone was originally deposited in the paleoequatorial to subequatorial zone. The paleomagnetic results corroborate previous African data that there has been no polar wandering and continental drift for Africa during 210 to 110 million years and extend this period to 85 million years.It is concluded that the Nubian Sandstone is deposited under tropical to subtropical climate and that it is formed under various continental conditions excluding eolian merging intermittently into shallow marine.
Zusammenfassung Die vorliegende Arbeit ist das Ergebnis paläomagnetischer Untersuchungen, die in kretazischer Nubischer Serie und zugehörigen vulkanischen Gesteinen sowie in hämatitischoolithischen Eisenerzen in der östlichen Wüste in Ägypten durchgeführt wurden. Es wird die Paläogeographie der Nubischen Serie, besonders der östlichen Wüste, diskutiert, einmal anhand verschiedener geologischer Beobachtungen und darüber hinaus anhand der paläomagnetischen Daten; beides weist auf ähnliche Deutungen hin. Die Lage des Paläoäquators und des Paläobreitenkreises 20° S zeigt an, daß die Nubische Serie in der Umgebung des damaligen Äquators abgelagert wurde. Die paläomagnetischen Ergebnisse bestätigen frühere afrikanische Daten, nach denen keine Kontinentaldrift für diesen Raum zwischen 210 und 110 Mill. Jahren stattfand, und erweitern diese Periode bis 85 Mill. Jahre. Es wird angenommen, daß die Nubische Serie in tropischem bis subtropischem Klima abgelagert wurde, und zwar unter den verschiedensten kontinentalen Ablagerungsbedingungen.

Résumé Le présent travail est le résultat des recherches paléomagnétiques effectuées sur le grès nubien crétacé, les volcanites associées et les minerais de fer hématitiques et oolithiques dans le désert oriental de l'Egypte. La paléogéographie du grès nubien, surtout celui du désert oriental, est discutée à la lumière des différentes observations géologiques variées et, en outre, des données paléomagnétiques; toutes deux concluent a la même signification. La position du paléoéquateur et de la paléolatitude 20° S montre que la série nubienne a été déposée dans le domaine proche de l'équateur relatif à cette époque.Les résultats paléomagnétiques corroborent les données africaines antérieures d'après lesquelles il n'y aurait pas eu, pour ces régions, de dérive continentale entre 210 à 110 millions d'années; ils prorogent cette période jusqu'à 85 millions d'années.On admet que le grès nbien fut déposé sous le climat tropical à sub-tropical et effectivement sous les différentes conditions de dépôt continentales.

, , - . , , . . 20° , . , 210–110 , 85 . , .
  相似文献   

13.
14.
The Pan-African basement exposed in the Meatiq area west of Quseir, Egypt, consists of an infracrustal basement overthrusted by a supracrustal cover. The infracrustal rocks were developed as a result of an old orogeny referred to as the Meatiqian orogeny where granite—gneiss, migmatitic gneisses and migmatized amphibolites were formed. The granite—gneiss represents a deformed granite pluton emplaced at 626±2 Ma, whereas the migmatitic gneisses and amphibolites are of mixed igneous and sedimentary parentage. In view of the data so far available, the nature of the Meatiqian orogeny could not be deciphered. In spite of the young isotopic ages, it is suggested that at least the metasedimentary gneisses represent older rocks in the stratigraphic sequence of the infracrustal basement.The supracrustal cover represents a part of an extensive ophiolitic mélange obducted onto the infracrustal basement during the next orogeny (Abu Ziran orogeny) which culminated at 613±2 Ma. An active continental margin-type regime can adequately explain the evolution of such a supracrustal cover. During obduction, the ophiolitic mélange and the upper 2 km thick part of the infracrustal basement were intensely deformed and metamorphosed under PT conditions of the greenschist—epidote amphibolite facies. The deformed infracrustal basement was converted into mylonitic—blastomylonitic rocks and schists composing five thrust sheets, and subsequently intruded by synkinematic granitoid sheets. Later, both the infracrustal basement and the overlying supracrustal cover were isostatically uplifted, subjected to complex shallow folding giving rise to the major Meatiq domal structure, and were intruded by a postkinematic adamellite pluton at 579±6 Ma.  相似文献   

15.
《International Geology Review》2012,54(16):1870-1884
The Central Eastern Desert (CED) is characterized by the widespread distribution of Neoproterozoic intra-oceanic island arc ophiolitic assemblages. The ophiolitic units have both back-arc and forearc geochemical signatures. The forearc ophiolitic units lie to the west of the back-arc related ones, indicating formation of an intra-oceanic island arc system above an east-dipping subducted slab (present coordinates). Following final accretion of the Neoproterozoic island arc into the western Saharan Metacraton, cordilleran margin magmatism started above a new W-dipping subduction zone due to a plate polarity reversal. We identify two belts in the CED representing ancient arc–forearc and arc–back-arc assemblages. The western arc–forearc belt is delineated by major serpentinite bodies running ~NNW–SSE, marking a suture zone. Ophiolitic units in the back-arc belt to the east show an increase in the subduction geochemical signature from north to south, culminating in the occurrence of bimodal volcanic rocks farther south. This progression in subduction magmatism resulted from diachronous opening of a back-arc basin from north to south, with a bimodal volcanic arc evolving farther to the south. The intra-oceanic island arc units in the CED include coeval Algoma-type banded iron formations (BIFs) and volcanogenic massive sulphide (VMS) deposits. Formation of the BIFs was related to opening of an ocean basin to the north, whereas development of the VMS was related to rifting of the island arc in the south. Gold occurs as vein-type mineral deposits, concentrated along the NNW–SSE arc–forearc belt. The formation of these vein-type gold ore bodies was controlled by the circulation of hydrothermal fluids through serpentinites that resulted in Au mobilization, as constrained by the close spatial association of auriferous quartz veins with serpentinites along the western arc–forearc belt.  相似文献   

16.
17.
Although, the Eastern Desert of Egypt forms about 22% of the surface area of the country, the area is undeveloped due to the limited availability of water. The morphologic units of the Eastern Desert consist of a number of drainage basins covering about 147,820 km2 (66.5% of the total surface area of the Eastern Desert). The basins drain the occasional rainwater, either towards the Nile Valley or to the Red Sea, causing flood hazards. The availability of water from the hydrologic systems of these basins could be improved by constructing runoff controlling systems in these areas (e.g. dykes and partially effective dams), which could save and make use of a considerable amount of water. The groundwater resources in the Eastern Desert can be divided into four main water-bearing units: the fractured crystalline Pre-Cambrian aquifer, the Nubian sandstone aquifer, the fractured limestone and sandstone aquifer and the Quaternary aquifer. The most productive aquifer is the Nubian sandstone while the fractured limestone and sandstone (Miocene) are only productive along the eastern part of the desert. The Quaternary aquifer occurs along the major dry washes (wadis) and is considered of limited potential as it is recharged mainly from the occasional rainfall. Detailed assessment of these aquifers should be carried out locally for further development of the area.
Resumen Aunque el Desierto Oriental de Egipto constituye alrededor del 22% de la superficie del país, esta área no se encuentra desarrollada por causa de la escasez de agua. Las unidades morfológicas del Desierto Oriental consisten de un número de cuencas de drenaje que cubren alrededor de 147,820 km2 (66.5% del área superficial total del Desierto Oriental). Estas cuencas drenan las aguas lluvias ocasionales, bien hacia el Valle del Nilo o hacia el Mar Rojo, causando amenazas de inundación. La disponibilidad de agua a partir de los sistemas hidrológicos de estas cuencas, puede ser mejorada al construir sistemas de control de escorrentía allí (Ej. Diques y presas de efectividad parcial), las cuales podrían almacenar y permitir el uso de una cantidad considerable de agua. Los recursos de agua subterránea en el Desierto Oriental, pueden dividirse en cuatro unidades principales portadoras de agua: El acuífero fracturado cristalino Pre – Cámbrico, el acuífero de la Arenisca de Nubia, el acuífero de arenisca y caliza fracturadas y el acuífero Cuaternario. El acuífero más productivo es la arenisca de Nubia, mientras que la arenisca y caliza fracturadas (Mioceno), son productivas únicamente a lo largo de la parte oriental del desierto. El acuífero Cuaternario se encuentra a lo largo de las corrientes intermitentes mayores (Wadis) y se le considera de potencial limitado por ser recargado principalmente a partir de lluvia ocasional. Una evaluación detallada de estos acuíferos debe llevarse a cabo localmente, para el desarrollo adicional de esta área.

Résumé Bien que le Désert Est occupe 22% de la surface de lEgypte, la région est sousdeveloppée à cause de la ressource en eau limitée. Les unités morphologiques consistent en des bassins drainant qui couvrent une surface de 147,820 km2 ,représentant 66.6% de la surface du Désert Est. Les bassins drainent les plues intermittentes vers la vallée du Nil ou vers la Mer Rouge en provocant des inondations. On peut augmenter la ressource en eau dans cette région en réalisant des systèmes de contrôle de ruissellements (des digues...) qui peuvent sauver et utiliser un volume considérable deau. La ressource en eau souterraine du Désert Est est cantonnée dans quatre grandes structures: l› aquifère fracturé cristallin Précambrien, l› aquifère gréseux Nubien, l› aquifère calcaire et gréseux et l› aquifère quaternaire. Le plus productif est l› aquifère gréseux Nubien tendis que les calcaire et les grèses dage miocène sont productives seulement dans la partie est du désert. L› aquifère quaternaire se trouve au long des oueds sèches et on considéré quil a un potentiel limité, étant rechargé seulement par les plues intermittentes. Pour le futur développement de la région il est nécessaire une évaluation détaillée, à léchelle locale de ces aquifères.
  相似文献   

18.
The ocellar lamprophyre dyke (ENE-WSW) is recorded at Wadi Nugrus, Eastern Desert, Egypt. It cuts porphyritic biotite granites and varies in thickness from 0.5 to 1.5 m and up to 3 km in length. The lamprophyre dyke has been altered, and it is characterized by porphyritic and panidiomorphic textures with plagioclase, olivine, and augite constituting the porphyritic phase in a fine groundmass of the same composition. Rutile, titanite, apatite, fluorite, graphite, calcite, allanite, autunite and Fe-Ti oxides are accessory minerals. Kaolinite, chlorite and epidote are secondary minerals. Carbonitization and hematitization are common. Rounded to sub-rounded porphyritic and zoned ocelli with radiate or brush-like shapes are generally common and represent physical traps for mineralization. The ocellar features are interpreted to represent the late stage of magmatic segregation or magmatic crystallization involving two immiscible magmatic liquids.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号