首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
Summary Two earth orbiting satellites with the same semimajor axes and eccentricities, but supplemental inclinations, define a direction — the bisector of their nodal lines — which is free from the secular motion due to the oblateness of the earth (Ciufolini 1986). We show that the inclination and the longitude of the node refer to the direction of the angular momentum of the earth. Because of the lunisolar precession and nutation, the longitude of the bisector so defined changes in a way dependent on the orientation of the angular momentum. If the relativistic Lense-Thirring precession is assumed, its measurement with two supplemental satellites will give information about the precessional and nutational constants.Research supported by the Piano Spazïale Nazionale of Italy.  相似文献   

4.
A sample of classical Cepheids with known distances and line-of-sight velocities has been supplemented with proper motions from the Gaia DR1 catalogue. Based on the velocities of 260 stars, we have found the components of the peculiar solar velocity vector (U, V, W) = (7.90, 11.73, 7.39) ± (0.65, 0.77, 0.62) km s?1 and the following parameters of the Galactic rotation curve: Ω0 = 28.84 ± 0.33 km s?1 kpc?1, Ω′0 = ?4.05 ± 0.10 km s?1 kpc?2, and Ω″0 = 0.805 ± 0.067 km s?1 kpc?3 for the adopted solar Galactocentric distance R 0 = 8 kpc; the linear rotation velocity of the local standard of rest is V 0 = 231 ± 6 km s?1.  相似文献   

5.
6.
Observation catalogues of extragalactic radio sources obtained by Very long Baseline Interferometry during the last decade agree in the mean to a few milliarcseconds (mas). Within this range the position differences show constant, linear and periodic offsets. To reduce the influence of individual catalogue properties the construction of a compilation catalogue seems to be the appropriate procedure. In some detail the compilation method is described providing simultaneous adjustment of source positions and catalogue corrections. The compilation catalogue consists of 40 objects having positional errors of 0.2 mas in right ascension (RA) and 0.3 mas in declination (Dec). Comparing this catalogue with the IERS Celestial Reference Frame compiled by means of other precepts yields weighted root-mean-square differences of 0.7 mas in RA and 1.3 mas in Dec. Finally, the terms of general precession in RA and Dec are included in the adjustment process giving estimates of the correction to the luni-solar precession between –1 and –3 mas/yr, the latter figure applying when some early data are added.  相似文献   

7.
According to the most recent geodetic VLBI data, some of the radio sources that define the fundamental celestial reference frame are astrometrically unstable. In contrast to the stellar proper motions described by a linear function, the apparent proper motions of quasars are more complex. Therefore, they are difficult to approximate by a particular model. Being disregarded, the positional instability of the defining quasars can lead to a bias in the estimates of other parameters from observations, for example, the nutation angle corrections.  相似文献   

8.
We consider two samples of OB stars with different distance scales that we have studied previously. The first and second samples consist of massive spectroscopic binaries with photometric distances and distances determined from interstellar calcium lines, respectively. The OB stars are located at heliocentric distances up to 7 kpc. We have identified them with the Gaia DR1 catalogue. Using the proper motions taken from the Gaia DR1 catalogue is shown to reduce the random errors in the Galactic rotation parameters compared to the previously known results. By analyzing the proper motions and parallaxes of 208 OB stars from the Gaia DR1 catalogue with a relative parallax error of less than 200%, we have found the following kinematic parameters: (U, V) = (8.67, 6.63)± (0.88, 0.98) km s?1, Ω0 = 27.35 ± 0.77 km s?1 kpc?1, Ω′0 = ?4.13 ± 0.13 km s?1 kpc?2, and Ω″0 = 0.672 ± 0.070 km s?1 kpc?3, the Oort constants are A = ?16.53 ± 0.52 km s?1 kpc?1 and B = 10.82 ± 0.93 km s?1 kpc?1, and the linear circular rotation velocity of the local standard of rest around the Galactic rotation axis is V 0 = 219 ± 8 km s?1 for the adopted R 0 = 8.0 ± 0.2 kpc. Based on the same stars, we have derived the rotation parameters only from their line-of-sight velocities. By comparing the estimated values of Ω′0, we have found the distance scale factor for the Gaia DR1 catalogue to be close to unity: 0.96. Based on 238 OB stars of the combined sample with photometric distances for the stars of the first sample and distances in the calcium distance scale for the stars of the second sample, line-of-sight velocities, and proper motions from the Gaia DR1 catalogue, we have found the following kinematic parameters: (U, V, W) = (8.19, 9.28, 8.79)± (0.74, 0.92, 0.74) km s?1, Ω0 = 31.53 ± 0.54 km s?1 kpc?1, Ω′0 = ?4.44 ± 0.12 km s?1 kpc?2, and Ω″0 = 0.706 ± 0.100 km s?1 kpc?3; here, A = ?17.77 ± 0.46 km s?1 kpc?1, B = 13.76 ± 0.71 km s?1 kpc?1, and V 0 = 252 ± 8 km s?1.  相似文献   

9.
10.
We discuss the ability of the SKA to observe QSO proper motions induced by long-wavelength gravitational radiation. We find that the SKA, configured for VLBI with multiple beams at high frequency (8 GHz), is sensitive to a dimensionless characteristic strain of roughly 10−13, comparable to (and with very different errors than) other methods in the 1/yr frequency band such as pulsar timing.  相似文献   

11.
A value for the zero-point (ρ) of the Cepheid period–luminosity relation, <  M V  >= 2.81 log P  + ρ, is deduced by comparing the value of the Oort constant, A , derived from radial velocities with that derived from Hipparcos proper motions. We find in this way that ρ =−1.47 ± 0.13, in excellent agreement with the value derived from Hipparcos trigonometrical parallaxes, ρ = −1.43 ± 0.10, by Feast &38; Catchpole in a recent paper.  相似文献   

12.
The radius and virial mass of the old open cluster M67 are presented. The internal motion and mass segregation of the cluster are also discussed on the basis of accurate stellar proper motions obtained combining three independent proper motion catalogues of the cluster. Increases of the mean proper motion and the intrinsic dispersion of member stars with radial distance from the cluster center might suggest that the stars are escaping from the cluster. The stars in both inner and outer regions appear to be in isotropic orbits. At last, it is found that both space and velocity mass segregations exist for the old open cluster due to the dynamical evolution.  相似文献   

13.
14.
A statistical study of 233 pulsar proper motions   总被引:2,自引:0,他引:2  
We present and analyse a catalogue of 233 pulsars with proper motion measurements. The sample contains a wide variety of pulsars including recycled objects and those associated with globular clusters or supernova remnants. After taking the most precise proper motions for those pulsars for which multiple measurements are available, the majority of the proper motions (58 per cent) are derived from pulsar timing methods, 41 per cent using interferometers and the remaining 1 per cent using optical telescopes. Many of the one-dimensional (1D) and two-dimensional (2D) speeds (referring to speeds measured in one coordinate only and the magnitudes of the transverse velocities, respectively) derived from these measurements are somewhat lower than earlier estimates because of the use of the most recent electron density model in determining pulsar distances. The mean 1D speeds for the normal and recycled pulsars are 152(10) and 54(6) km s−1, respectively. The corresponding mean 2D speeds are 246(22) and 87(13) km s−1. PSRs B2011+38 and B2224+64 have the highest inferred 2D speeds of  ∼1600 km s−1  . We study the mean speeds for different subsamples and find that, in general, they agree with previous results. Applying a novel deconvolution technique to the sample of 73 pulsars with characteristic ages less than 3 Myr, we find the mean three-dimensional (3D) pulsar birth velocity to be 400(40) km s−1. The distribution of velocities is well described by a Maxwellian distribution with  1D rms σ= 265 km s−1  . There is no evidence for a bimodal velocity distribution. The proper motions for PSRs B1830−08 and B2334+61 are consistent with their proposed associations with the supernova remnants W41 and G114.3+0.3, respectively.  相似文献   

15.
16.
We discuss the determination of membership of 42 open clusters. Our analysis shows that Vasilevskis' mathematical model can be reasonably applied to this case. Our improved version of Sanders' method and our definition of cluster member based on the principles of discriminatory analysis effectively exclude stars of low probabilities. It is important in the study of open cluster to use only those with high probabilities. The effectiveness of the statistical method is closely related to the velocity distributions of the member and field stars. For fields where the error rate is high, it is better to combine other data than proper motion in determining membership.  相似文献   

17.
Greenwich data for proper motions of the components of sunspot groups are analysed. We have found that only 4% of the 408 examined sunspot groups do not show systematic proper motions of the components at the beginning of their life. Interpreting proper motions as the results of ascending sub-photospheric magnetic flux tubes, information on characteristics of the tubes have been deduced. The influence of proper motions on the evaluation of the sunspot rotation rates is discussed.  相似文献   

18.
We have measured the absolute proper motions of 534 stars in a 1.5° × 1.5° region around the cluster M3, using 14 plates taken with a 40-cm refractor spanning 80 years. 24 stars in the ACT catalogue were used to define the reference frame and the reduction was made using the central overlapping technique. Using the new data, the membership probabilities were redetermined. The mean absolute motion of the cluster was found to be −0.3 ± 0.3 mas/yr in R.A., and −3.1 ± 0.3 mas/yr in declination. Combining the present data with the known distance and radial velocity, the three-dimensional galactic orbit of M3 was calculated for Allen's galactic potential.  相似文献   

19.
A new method for selecting stars in the Galactic bar based on 2MASS infrared photometry in combination with stellar proper motions from the Kharkiv XPM catalogue has been implemented. In accordance with this method, red clump and red giant branch stars are preselected on the color-magnitude diagram and their photometric distances are calculated. Since the stellar proper motions are indicators of a larger velocity dispersion toward the bar and the spiral arms compared to the stars with circular orbits, applying the constraints on the proper motions of the preselected stars that take into account the Galactic rotation has allowed the background stars to be eliminated. Based on a joint analysis of the velocities of the selected stars and their distribution on the Galactic plane, we have confidently identified the segment of the Galactic bar nearest to the Sun with an orientation of 20°–25° with respect to the Galactic center-Sun direction and a semimajor axis of no more than 3 kpc.  相似文献   

20.
Using astrometric plates of Shanghai Observatory spanning a period of 29 years, the absolute proper motion of the Galactic globular cluster M79 was measured. Adopting the distance and radial velocity given by Harris (1999), its present space velocity was derived; then by taking the Galactic gravitational potential model proposed by Allen and Santillan (1991), its past orbital parameters in the Galactic system were derived. We also discuss the uncertainties in kinematical studies of globular clusters based on the use of proper motion data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号