首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
尖峰北盆地位于南海北部大陆边缘南部,是一个新生代沉积盆地。盆地发育了A、B、C、D、E5套地震层序;盆地内地质构造复杂,断裂发育,平面上断裂展布方向主要有NE向、近EW向和NW向三组,断裂可分为正断层及平移断层,以正断层为主。古新世—始新世为盆地形成时期即断陷阶段,盆地内部充填了大量河湖相沉积。渐新世—中中新世为盆地发展期即坳陷阶段,盆地沉积类型由陆相逐步过渡到海陆过渡相和海相。中中新世末期,盆地相对隆升,部分地区遭受剥蚀。晚中新世—全新世为区域沉降阶段,盆地及其围区以稳定的浅海-半深海相沉积为主。盆地早期河湖相、三角洲相沉积分布范围较广,最大沉积厚度超过4500m,具有一定的生烃能力;盆地储盖条件良好,油气运移条件良好;尖峰北盆地具备较好的油气潜力。  相似文献   

2.
A high resolution seismic survey was carried out on the continental slope of Israel, NW of Caesarea. The area was studied in order to map the tectonic elements of the Dor structure, and to extrapolate and suggest a structural model of the tectonics of the continental slope of the SE Mediterranean since the Late Miocene. It was found that the continental slope was affected by two faulting systems—NW trending strike-slip faults and NNE trending normal faults. Faults of both systems are associated with numerous slumps along the slope. However, the NW trending faults belong to a faulting system of similar trend that abounds in the adjacent continent and extends northwestwards across the continental shelf and slope to the continental rise. The NNE trending faults form the shelf-edge faulting system that was associated with the subsidence of the eastern Mediterranean basin since the Pliocene. Thus the continental slope is not only a morphological transition zone but also a tectonic one, showing the influence of both the continental and the oceanic structural regimes in the SE Mediterranean region.  相似文献   

3.
The Edremit Gulf, which developed during the Neogene-Quaternary, is a seismically active graben in NW Anatolia (Turkey) surrounded by the Sakarya continent. The sedimentary deposits in the gulf overlie the bedrock unconformably and can be separated into two parts as upper and lower deposits based on similarity of their seismic characteristics, and because the contact between them is clear. The lower deposits are characterized in the seismic profiles by the absence of well defined, continuous reflectors and are strongly disturbed by faults. A tectonic map and structural model of the Edremit Gulf was derived from interpreting 21 deep seismic profiles trending NE–SW and NW–SE within the gulf. Two fault systems were distinguished on the basis of this compilation. The NNW–SSE trending parallel faults are low-angle normal faults formed after compression. They controlled and deformed the lower basin deposits. A syncline and anticline with a broad fold-curvature length resulted in folds that developed parallel to basin boundaries in the lower basin deposits. The ENE–WSW trending high-angle faults have controlled and deformed the northern basin of the Edremit Gulf. The folds developed within the northern lower deposits originated from the listric geometry of the faults. These faults are normal faults associated with regional N–S extension in western Anatolia. The Edremit Gulf began to open under the control of low-angle NNW–SSE trending faults that developed after the compression of western Anatolia in an E–W direction in the early Neogene. Subsequently, regional N–S extensional stress and high-angle normal faults cut the previous structures, opened the northern basin, and controlled and deformed the lower basin deposits in the gulf. As a result, the Edremit Gulf has not been controlled by any strike-slip faults or the Northern Anatolian Fault. The basin developed in the two different tectonic regimes of western Anatolia as an Aegean type cross-graben from the Neogene to Holocene.  相似文献   

4.
Most of the basins developed in the continental core of SE Asia (Sundaland) evolved since the Late Cretaceous in a manner that may be correlated to the conditions of the subduction in the Sunda Trench. By the end of Mesozoic times Sundaland was an elevated area composed of granite and metamorphic basement on the rims; which suffered collapse and incipient extension, whereas the central part was stable. This promontory was surrounded by a large subduction zone, except in the north and was a free boundary in the Early Cenozoic. Starting from the Palaeogene and following fractures initiated during the India Eurasia collision, rifting began along large faults (mostly N–S and NNW–SSE strike-slip), which crosscut the whole region. The basins remained in a continental fluvio-lacustrine or shallow marine environment for a long time and some are marked by extremely stretched crust (Phu Khanh, Natuna, N. Makassar) or even reached the ocean floor spreading stage (Celebes, Flores). Western Sundaland was a combination of basin opening and strike-slip transpressional deformation. The configuration suggests a free boundary particularly to the east (trench pull associated with the Proto-South China Sea subduction; Java–Sulawesi trench subduction rollback). In the Early Miocene, Australian blocks reached the Sunda subduction zone and imposed local shortening in the south and southeast, whereas the western part was free from compression after the Indian continent had moved away to the north. This suggests an important coupling of the Sunda Plate with the Indo-Australian Plate both to SE and NW, possibly further west rollback had ceased in the Java–Sumatra subduction zone, and compressional stress was being transferred northwards across the plate boundary. The internal compression is expressed to the south by shortening which is transmitted as far as the Malay basin. In the Late Miocene, most of the Sunda Plate was under compression, except the tectonically isolated Andaman Sea and the Damar basins. In the Pliocene, collision north of Australia propagated toward the north and west causing subduction reversal and compression in the short-lived Damar Basin. Docking of the Philippine Plate confined the eastern side of Sundaland and created local compression and uplift such as in NW Borneo, Palawan and Taiwan. Transpressional deformation created extensive folding, strike-slip faulting and uplift of the Central Basin and Arakan Yoma in Myanmar. Minor inversion affected many Thailand rift basins. All the other basins record subsidence. The uplift is responsible for gravity tectonics where thick sediments were accumulated (Sarawak, NE Luconia, Bangladesh wedge).  相似文献   

5.
Analysis of 2 D seismic data over 4 500 km in length from the Madura Strait Basin in the East Java Sea reveals seismic re?ection characteristics of reefs and associated sedimentary bodies, including asymmetrical or symmetrical dome re?ections, slope progradational re?ections, chaotic re?ections and discontinuous strong re?ections inside the reef, which onlap the ?ank of the reef. It is concluded that the developmental paleo-environment of most reefs is mainly conducive to shallow marine carbonate platform facies and platform margin facies, based on well core data, variations in seismic facies and strata thickness.The formation and evolution of all reefs are primarily in?uenced by the tectonic framework of the Madura Strait Basin. Platform margin reefs are principally controlled by two types of structures: one is a series of E-W trending Paleogene normal faults, and the other is an E-W trending Neogene inversion structures. In addition, wave actions, tidal currents and other ocean currents play an accelerated role in sorting, rounding and redeposition for the accumulation and evolution of reefs. Tertiary reefs in the MSB can be divided into four types: 1) an open platform coral reef of Late Oligocene to Early Miocene, 2) a platform margin coral reef controlled by normal faults in Late Oligocene to Early Miocene, 3) a platform margin Globigerina moundreef controlled by a "hidden" inversion structure in Early Pliocene, and 4) a platform margin Globigerina mound-reef controlled by thrust faults in the early Pliocene. Patterns of the formation and evolution of reefs are also suggested.  相似文献   

6.
A synthesis of high-resolution (Chirp, 2–7 kHz) subbottom profiles in the Ulleung Basin reveals patchy distribution of shallow (<90 m subbottom depth) gassy sediments in the eastern basin plain below 1,800-m water depth. The shallow gases in the sediments are associated with acoustic turbidities, columnar acoustic blankings, enhanced reflectors, dome structures, and pockmarks. Analyses of gas samples collected from a piston core in an earlier study suggest that the shallow gases are thermogenic in origin. Also, published data showing high amounts of organic matter in thick sections of marine shale (middle Miocene to lower Pliocene sequence) and high heat flow in the basin plain sediments are consistent with the formation of deep, thermogenic gas. In multi-channel deep seismic profiles, numerous acoustic chimneys and faults reflect that the deep, thermogenic gas would have migrated upwards from the deeper subsurface to the near-seafloor. The upward-migrating gases may have accumulated in porous debrites and turbidites (upper Pliocene sequence) overlain by impermeable hemipelagites (Quaternary sequence), resulting in the patchy distribution of shallow gases on the eastern basin plain.  相似文献   

7.
In Northern Ethiopia oil seepage could be traced flowing through fractured basalts at the Mechela river bed near Wereilu town. These rocks make up part of the huge volume of Ethiopia's Oligocene-Miocene Plateau basalts and associated rhyolites that cover most of the central and northern part of the country. They overlie the marine sedimentary formations of Triassic–Cretaceous age and constitute one of the largest visible flood basalts on the face of the earth.2-D and 3-D analyses of the gravity field have been performed to determine the structural pattern and subsurface density distributions beneath the thick volcanic sequences. The resulting images offer significant new insights into the structural pattern and geophysical characterization of the study area. A NW–SE elongated basin of significant dimension has been localized directly beneath the oil seep at Wereilu. The basin is a graben formed within and by the NW–SE trending structures of the Karroo rift system. A younger generation of faults in the NE–SW direction has affected the basin exerting significant control on the geometry and perhaps on the sedimentation pattern that might have played a major role in hydrocarbon accumulation and localization.The nature and thickness of the sub-volcanic sedimentary succession, attaining a significant thickness of more than 5 km, coupled with the overlying thick volcanic sequences providing the necessary thermal gradient for the maturation of the organic material create a favorable condition for the generation and accumulation of hydrocarbon deposit.  相似文献   

8.
渤海海域构造应力场演化及其在油气聚集中的作用   总被引:3,自引:0,他引:3  
渤海海域位于渤海湾盆地东部,在盆地区域动力学背景下,形成了渤海海域特征的沉积和构造环境。渤海海域新生代具有早期断陷、后期拗陷的特点,断裂以NE—NNE走向为主,其次是EW走向,再次是NW走向。通过区域构造演化和沉积体系的深入研究,将海域新生代地质构造活动按构造应力的方向、大小和其他构造形变参数划分为4个期次:①古新世;②始新世—渐新世;③中新世—早更新世;④晚更新世至今。在一系列构造演化过程中,构造应力场的变化对海域内的3组主要断裂具有重要的影响。不同方向的断裂在不同阶段应力场的作用下,所表现的特征和对油气的控制作用是不同的,尤其是NNE—NE向断裂在构造演化过程中多次具有走滑活动,油气主要聚集在走滑作用所派生的局部圈闭或附近存在的构造弱化带中。  相似文献   

9.
The Central Trough of the North Sea is not a simple rift graben. It is an elongated area of regional subsidence which was initiated in mid Cretaceous times and continued to subside through to the late Tertiary. Its form is not representative of pre-mid Cretaceous tectonics.In Late Permian times the North Sea was divided into a northern and southern Zechstein basin by the E-W trending Mid North Sea-Ringkøbing-Fyn High. The latter was dissected by a narrow graben trending NNW through the Tail End Graben and the Søgne Basin. The Feda Graben was a minor basin on the northern flank of the Mid North Sea High at this time. This structural configuration persisted until end Middle Jurassic times when a new WNW trend separated the Tail End Graben from the Søgne Basin. Right lateral wrench movement on this new trend caused excessive subsudence in the Tail End and Feda Grabens while the Søgne Basin became inactive.Upper Jurassic subsidence trends continued during the Early Cretaceous causing the deposition of large thicknesses of sediments in local areas along the trend. From mid Cretaceous times the regional subsidence of the Central Trough was dominant but significant structural inversions occurred in those areas of maximum Early Cretaceous and Late Jurassic subsidence.  相似文献   

10.
The Solway Basin forms the western portion of the Northumberland Trough, a Carboniferous basin system trending WSW-ENE across northern England. A study of the tectono-stratigraphic variations along the margins allows certain predictions to be made regarding the hydrocarbon prospectivity of the Dinantian. It is proposed that earliest Carboniferous extension initiated a series of half-grabens separated by transfer zones that have subsequently formed fold culminations and fault belts within the basin. A model for the proposed graben polarity-switching in the basin system is outlined. Differential subsidence across active faults led to pronounced facies variations in the Courcevan-Chadian which subsequently declined in importance until, in Brigantian-Pendleian times, deposition was governed by regional subsidence.The initial stages of graben formation led to the deposition of subaerial coarse clastic facies associations followed by a cyclical series of marine transgressions and regressions. The model anticipates that the best development of reservior facies is in the distal nearshore equivalent of the Early Dinantian alluvial coarse clastics. One of the hydrocarbon objectives identified is stratigraphic trapping in these sands, enhanced by Courceyan-Chadian rollover. Early Carboniferous algal source rocks are considered as lateral equivalents to the reservoirs and are calculated as oil-generating from the Permo-Trias onwards. The Westphalian coals are unlikely to have generated significant gas in the basin.  相似文献   

11.
The evolution of the North Aegean Sea is studied through the development of three deep basins: the North Aegean Trough, the North Skyros Basin and the Ikaria Basin. Bathymetric data, a 2D seismic dataset and the well-investigated stratigraphic records of the onshore deep basins of northern Greece and Western Turkey were used to make structural and seismic stratigraphic interpretations. The study area shows two sharp unconformities that correspond to the Eocene-Oligocene transition and the Miocene-Pliocene shift. These discontinuities were used as marker horizons for a more detailed structural and seismic stratigraphic interpretation resulting in the identification of several seismic units. A general seismic signature chart was established using onshore basin stratigraphy and well data, which was then used to constrain the ages of the different seismic units. The main features observed in the basins are interpreted as: 1) trans-tensional growth patterns in Pliocene and Quaternary sediments that combine NE–SW trending and steeply dipping fault zones that likely correspond to strike-slip corridors and E-W/WNW-ESE trending normal faults, 2) regional erosional truncations of Miocene sediments, likely related to the Messinian Salinity Crisis (MSC), 3) thick delta-turbidite deposits of Neogene age. Only the North Aegean Trough shows evidence of earlier development and polyphase deformation through inversion structures, and additional seismic units. Extension processes in the Aegean region have been driven by the Hellenic slab rollback since the middle Eocene. The widespread development of Neogene basins at the whole Aegean scale attests to a major tectonic change due to an acceleration of the trench retreat in the middle Miocene. The present study shows that the Neogene basins of the North Aegean Sea developed in dextral transtension with the northward migration of the associated NE-SW trending strike-slip faults. At regional scale, this tectonic pattern indicates that the westward escape of Anatolia started to interact with the trench retreat in the middle Miocene, around 10 Myr before the arrival of the North Anatolian Fault in the North Aegean Sea.  相似文献   

12.
This study provides the results of the first integrated study of Oligocene–Pliocene basins around Norway.Within the study area, three main depocentres have been identified where sandy sediments accumulated throughout the Oligocene to Early Pliocene period. The depocentre in the Norwegian–Danish Basin received sediments from the southern Scandes Mountains, with a general progradation from north to south during the studied period. The depocentre in the basinal areas of the UK and Norwegian sectors of the North Sea north of 58°N received sediments from the Scotland–Shetland area. Because of the sedimentary infilling there was a gradual shallowing of the northern North Sea basin in the Oligocene and Miocene. A smaller depocentre is identified offshore northern Nordland between Ranafjorden (approximately 66°N) and Vesterålen (approximately 68°N) where the northern Scandes Mountains were the source of the Oligocene to Early Pliocene sediments. In other local depocentres along the west coast of Norway, sandy sedimentation occurred in only parts of the period. Shifts in local depocentres are indicative of changes in the paleogeography in the source areas.In the Barents Sea and south to approximately 68°N, the Oligocene to Early Pliocene section is eroded except for distal fine-grained and biogenic deposits along the western margin and on the oceanic crust. This margin was undergoing deformation in a strike-slip regime until the Eocene–Oligocene transition. The Early Oligocene sediments dated in the Vestbakken Volcanic Province and the Forlandssundet Basin represent the termination of this strike-slip regime.The change in the plate tectonic regime at the Eocene–Oligocene transition affected mainly the northern part of the study area, and was followed by a quiet tectonic period until the Middle Miocene, when large compressional dome and basin structures were formed in the Norwegian Sea. The Middle Miocene event is correlated with a relative fall in sea level in the main depocentres in the North Sea, formation of a large delta in the Viking Graben (Frigg area) and uplift of the North and South Scandes domes. In the Norwegian–Danish Basin, the Sorgenfrei-Tornquist Zone was reactivated in the Early Miocene, possibly causing a shift in the deltaic progradation towards the east. A Late Pliocene relative rise in sea level resulted in low sedimentation rates in the main depositional areas until the onset of glaciations at about 2.7 Ma when the Scandes Mountains were strongly eroded and became a major source of sediments for the Norwegian shelf, whilst the Frigg delta prograded farther to the northeast.  相似文献   

13.
通过对“Sonne”号调查船第50航次的地震剖面资料分析,结合一些钻井资料,认为珠江口盆地中部第四纪以来的沉积可分为四套,其中层Ⅰ是浅海相沉积,属全新世;层Ⅱ,Ⅲ,Ⅳ是海陆相交替沉积,属更新世。在陆架区第四纪沉积厚220—400m,其中全新世沉积厚约29m。作者认为珠江口盆地的不稳定地质因素有:浅层断裂,埋藏古河道,浅层气,泥底辟,活动沙波,海底滑移,活动断裂与地震。  相似文献   

14.
Cenozoic eastward migration of the Caribbean plate relative to the South American plate is recorded by an 1100-km-long Venezuela-Trinidad foreland basin which is oldest in western Venezuela (65-55 Ma), of intermediate age in eastern Venezuela (34-20 Ma) and youngest beneath the shelf and slope area of eastern offshore Trinidad (submarine Columbus basin, 15.0 Ma-Recent). In this study of the regional structure, fault families, and chronology of faulting and tectonic events affecting the hydrocarbon-rich Columbus foreland basin of eastern offshore Trinidad, we have integrated approximately 775 km of deep-penetration 2D seismic lines acquired by the 2004 Broadband Ocean-Land Investigations of Venezuela and the Antilles arc Region (BOLIVAR) survey, 325 km of vintage GULFREX seismic data collected by Gulf Oil Company in 1974, and published industry well data that can be tied to some of the seismic reflection lines. Top Cretaceous depth structure maps in the Columbus basin made from integration of all available seismic and well data define for the first time the elongate subsurface geometry of the 11-15 km thick and highly asymmetrical middle Miocene-Recent depocenter of the Columbus basin. The main depocenter located 150-200 km east of Trinidad and now the object of deepwater hydrocarbon exploration is completely filled by shelf and deepwater sediments derived mainly from the Orinoco delta. The submarine Darien ridge exhibits moderate (20-140 m) seafloor relief, forms the steep (12°-24°), northern structural boundary of the Columbus basin, and is known from industry wells to be composed of 0.5-4.5 km thick, folded and thrust-imbricated, hydrocarbon-bearing section of Cretaceous and early Tertiary limestones and clastic rocks. The eastern and southern boundaries of the basin are formed by the gently (1.7°-4.5°), northward-dipping Cretaceous-Paleogene passive margin of South America that is in turn underlain by Precambrian rocks of the Guyana shield.Interpretation of seismic sections tied to wells reveals the following fault chronology: (1) middle Miocene thrusting along the Darien ridge related to highly oblique convergence between the Caribbean plate and the passive margin of northern South America; continuing thrusting and transpression in an oblique foreland basin setting through the early Pleistocene; (2) early Pliocene-recent low-angle normal faults along the top of the Cretaceous passive margin; these faults were triggered by oversteepening related to formation of the downdip, structurally and bathymetrically deeper, and more seaward Columbus basin; large transfer faults with dominantly strike-slip displacements connect gravity-driven normal faults that cluster near the modern shelf-slope break and trend in the downslope direction; to the south no normal faults are present because the top Cretaceous horizon has not been oversteepened as it is adjacent to the foreland basin; (3) early Pliocene-Recent strike-slip faults parallel the trend of the Darien ridge and accommodate present-day plate motions.  相似文献   

15.
The Seram Trough is located in the northern part of the Banda Arc-Australian collision zone in eastern Indonesia and is currently the site of contraction between the Bird's Head of New Guinea and Seram Island. It has been interpreted as a subduction trench, an intra-continental thrust zone and foredeep, and a zone of strike-slip faulting. Recently acquired 2D seismic lines clarify its tectonic evolution and relationship to the Bird's Head. Folding in the Early Pliocene formed an anticlinorium running from Misool to the Onin Peninsula of Irian Jaya and produced a newly recognised angular unconformity. The unconformity truncates sediments as old as Middle Jurassic and is an ancient topographic surface with significant relief. It was later folded and now dips south towards the trough where it is covered by up to 3 km of sediments. Initial tilting of the unconformity surface was accompanied by deposition of a transgressive sequence which can be traced into the trough. This is overlain by two sequences which prograde towards the trough. These sequences show progressive rotation of the unconformity surface, gravitational displacement of sediments into the trough, and thrusting which continues to the present day. Contraction occurred in the trough after the Early Pliocene and is younger than the previously suggested Late Miocene age. Thrust faults in the trough deform sediments deposited above the unconformity and detach at the unconformity surface. On Seram thrust faults repeat Mesozoic–Miocene sequences and probably detach at their contact with metamorphic basement. The detachment surface must cut through the Mesozoic-Miocene sequence between Seram and the trough. This work suggests the Seram Trough is not a subduction trench but a foredeep produced in response to loading by the developing fold and thrust belt of Seram, with an associated peripheral bulge to the north. The Seram Trough is interpreted to be a very young zone of thrusting within the Australian continental margin.  相似文献   

16.
Tectonic evolution of the internal sector of the Central Apennines, Italy   总被引:2,自引:0,他引:2  
A wide sector of the internal portion of the Central Apennines, which comprises the southern Lepini Mtns up to the northern Simbruini Mtns has been investigated through detailed field mapping and integrated with structural analyses. A few small productive oil fields and a large number of hydrocarbon seeps and oil impregnations are located in this sector. This area offers good opportunities for testing the use of structural fieldwork methodologies in order to highlight oil migrating paths, from Triassic source rocks, and prospecting chances for oil field exploitation.The main stages of the structural evolution of the area took place after deposition of the foredeep sediments (Frosinone Fm.), i.e. after Late Tortonian, under a stress field characterised by a NE–SW trending σ1, which was responsible for the early emplacement of major thrust faults present in the area. The Messinian-Early Pliocene thrust-top basin deposits allowed the reconstruction of an in-sequence evolution of the thrust system. The development of out-of-sequence thrusting post-dates these structures leading to a further strong shortening phase in the area during the Pliocene. This phase is characterised by a roughly NNE–SSW trending σ1. Some peculiar tectonic features evidenced by thrust faults with younger-over-older relationships and an inversion of the original stacking of thrust sheets developed during this phase.Successively, a block-faulting tectonic, mainly with NE–SW extension stress field, occurred and dismembered the compressive tectonic edifice.Later on up to the Middle Pleistocene, N–S to NNE–SSW trending dextral strike-slip faults also acted in the area. Associated to the strike-slip tectonics are local volcanic centres as well as necks, whose compositions show a mantle origin, thus indicating deep seating and a possible lithospheric significance of these structures.In the light of this study, the reduced extension of the productive oil area as well as the spotting of oil seeps, may indicate that the migration conditions are not tied to well defined structures but that likely the cross-cutting points among structures facilitate the conditions for an upwards rising of oil. These conditions in particular are achieved at least in two cases: (1) where the Late Triassic source rocks do not have great depth due to normal or reverse faults, or (2) at a major depth when encountered by transcurrent-oblique roughly N–S trending faults—in both cases oil can easily migrate along the damage zone associated to the fault plane.  相似文献   

17.
The Pliocene and Pleistocene sediments at lease block Green Canyon 955 (GC955) in the Gulf of Mexico include sand-rich strata with high saturations of gas hydrate; these gas hydrate accumulations and the associated geology have been characterized over the past decade using conventional industry three-dimensional (3D) seismic data and dedicated logging-while-drilling (LWD) borehole data. To improve structural and stratigraphic characterization and to address questions of gas flow and reservoir properties, in 2013 the U.S. Geological Survey acquired high-resolution two-dimensional (2D) seismic data at GC955. Combined analysis of all available data improves our understanding of the geological evolution of the study area, which includes basin-scale migration of the Mississippi River sediment influx as well as local-scale shifting of sedimentary channels at GC955 in response to salt-driven uplift, structural deformation associated with the salt uplift, and upward gas migration from deeper sediments that charges the main gas hydrate reservoir and shallower strata. The 2D data confirm that the sand-rich reservoir is composed principally of sediments deposited in a proximal levee setting and that episodes of channel scour, interspersed with levee deposition, have resulted in an assemblage of many individual proximal levee deposit “pods” each with horizontal extent up to several hundred meters. Joint analysis of the 2D and 3D data reveals new detail of a complex fault network that controls the fluid-flow system; large east-west trending normal faults allow fluid flow through the reservoir-sealing fine-grained unit, and smaller north-south oriented faults provide focused fluid-flow pathways (chimneys) through the shallower sediments. This system has enabled the flow of gas from the main reservoir to the seafloor throughout the recent history at GC955, and its intricacies help explain the distributed occurrences of gas hydrate in the intervening strata.  相似文献   

18.
Magnetic total intensity values and bathymetric data collected on the continental margin off Saurashtra were, used to prepare magnetic anomalies and bathymetric contour maps. The magnetic anomalies are considered to have been caused by the Deccan Trap flood basalts which underlie the Tertiary sediments. Interpretation of the magnetic data using two-dimensional modelling method suggests that the magnetic basement is block faulted and deepens in steps from less than 1.0 km in the north to about 8.0 km towards the southern portion of the study area. The WNW-ESE trending faults identified in the present study extend across the Saurashtra continental margin between Porbandar and Veraval and appear to represent a major linear tectonic feature. The relationship of these fault lineaments with the regional tectonic framework have been discussed to indicate that they conform better as the northern boundary faults of the Narmada rift graben on the continental margin off Saurashtra.  相似文献   

19.
The passive Eastern Continental Margin of India (ECMI) evolved during the break up of India and East Antarctica in the Early Cretaceous. The 85°E ridge is a prominent linear aseismic feature extending from the Afanasy Nikitin Seamounts northward to the Mahanadi basin along the ECMI. Earlier workers have interpreted the ridge to be a prominent hot spot trail. In the absence of conclusive data, the extension of the ridge towards its northern extremity below the thick Bengal Fan sediments was a matter of postulation. In the present study, interpretation of high resolution 2-D reflection data from the Mahanadi Offshore Basin, located in the northern part of the ridge, unequivocally indicates continuation of the ridge across the continent–ocean boundary into the slope and shelf tracts of the ECMI. Its morphology and internal architecture suggest a volcanic plume related origin that can be correlated with the activity of the Kerguelen hot spot in the nascent Indian Ocean. In the continental region, the plume related volcanic activity appears to have obliterated all seismic features typical of continental crust. The deeper oceanic crust, over which the hot spot plume erupted, shows the presence of linear NS aligned basement highs, corresponding with the ridge, underlain by a depressed Moho discontinuity. In the deep oceanic basin, the ridge influences the sediment dispersal pattern from the Early Cretaceous (?)/early part of Late Cretaceous times till the end of Oligocene, which is an important aspect for understanding the hydrocarbon potential of the basin.  相似文献   

20.
琼东南盆地断裂构造与成因机制   总被引:24,自引:0,他引:24  
琼东南盆地断裂较为发育,主要发育NE、近EW和NW向的三组断裂,其中NE向和近EW向断裂是主要的控盆断裂。盆地早期发育主要受基底先存断裂的控制,形成了众多裂陷构造;晚期主要受热沉降作用控制,断裂不太发育,对沉积的控制作用较弱,从而使盆地具有典型的裂陷盆地和双层结构特征。琼东南盆地受到太平洋俯冲后撤、印藏碰撞和南海张开等多期构造的作用,盆地的裂陷期可以分为两阶段:始新世—早渐新世的整体强张裂期,晚渐新世—早中新世的弱张裂期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号