首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present results from N-body simulations of the clustering properties of the universe in a cubic box of size 260h−1 Mpc, within a cold dark matter (CDM) cosmology with skewed distributions for initial adiabatic density perturbations δM. We consider two non-Gaussian models, Chi-squared and Lognormal, where the primordial gravitational potential is obtained from a non-linear transformation on a Gaussian random field. Our procedure yields for each model two primordial density distributions with opposite skewness δ3M. The gravitational evolution and the present statistical properties of our simulations are strongly sensitive to the sign of the initial skewness. Skew-positive simulations produce a highly lumpy distribution with little power on large scales. Skew-negative simulations, on the contrary, evolve towards a cellular structure with high power on large scales, showing, in many respects, better agreement with observations than the standard CDM model. Giving up the random-phase hypothesis for primordial perturbations seems then a viable possibility to reproduce the large-scale properties of the universe; such a possibility is further motivated by many physical models either within the inflationary dynamics or phase transitions in the early universe.  相似文献   

2.
Abstract— We describe results of 32 N‐body planetary accretion simulations that investigate the dependence of terrestrial‐planet formation on nebula surface density profile σ and evolution of the eccentricities of Jupiter and Saturn ej,s. Two surface density profiles are examined: a decaying profile with σ ∝ 1/a, where a is orbital semi‐major axis, and a peaked profile in which σ increases for a < 2 AU and decreases for a > 2 AU. The peaked profiles are generated by models of coagulation in an initially hot nebula. Models with initial ej,s = 0.05 (the current value) and 0.1 are considered. Simulations using the decaying profile with ej,s = 0.1 produce systems most like the observed planets in terms of mass‐weighted mean a and the absence of a planet in the asteroid belt. Simulations with doubled σ produce planets roughly twice as massive as the nominal case. Most initial embryos are removed in each simulation via ejection from the solar system or collision with the Sun. The asteroid belt is almost entirely cleared on a timescale of 10–100 Ma that depends sensitively on ej,s. Most initial mass with a < 2 AU survives, with the degree of mass loss increasing with a. Mass loss from the terrestrial region occurs on a timescale that is long compared to the mass loss time for the asteroid belt. Substantial radial mixing of material occurs in all simulations, but is greater in simulations with initital ej,s = 0.05. The degree of mixing is equivalent to a feeding zone of half width 1.5 and 0.9 AU for an Earth mass planet at 1 AU for the cases ej,s = 0.05 and 0.1, respectively. In simulations with ej,s = 0.05, roughly one‐third and 5–10% of the mass contained in final terrestrial planets originated in the region a > 2.5 AU for the decaying and peaked profiles, respectively. In the case ej,s = 0.1, the median mass accreted from a > 2.5 AU is zero for both profiles.  相似文献   

3.
We compare results from numerical simulations with observations of edge-on galaxies interacting/merging with a small companion (Schwarzkopf and Dettmar,2000), hereafter S&D00). Observations show a clear influence of the merging and interacting process on disk scale parameters h (radial scalelength), z 0 (vertical scalelength) and their ratio (h/z 0), leading to a heating and thickening of the stellar disk. Our numerical simulations show the same behaviour but differ significantly in the magnitude of the change of the disk scale parameters. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

4.
We present the online MultiDark Database – a Virtual Observatory‐oriented, relational database for hosting various cos‐mological simulations. The data is accessible via an SQL (Structured Query Language) query interface, which also allows users to directly pose scientific questions, as shown in a number of examples in this paper. Further examples for the usage of the database are given in its extensive online documentation. The database is based on the same technology as the Millennium Database, a fact that will greatly facilitate the usage of both suites of cosmological simulations. The first release of the MultiDark Database hosts two 8.6 billion particle cosmological N‐body simulations: the Bolshoi (250 h–1 Mpc simulation box, 1 h–1 kpc resolution) and MultiDark Run1 simulation (MDR1, or BigBolshoi, 1000 h–1 Mpc simulation box, 7 h–1 kpc resolution). The extraction methods for halos/subhalos from the raw simulation data, and how this data is structured in the database are explained in this paper. With the first data release, users get full access to halo/subhalo catalogs, various profiles of the halos at redshifts z = 0–15, and raw dark matter data for one time‐step of the Bolshoi and four time‐steps of the MultiDark simulation. Later releases will also include galaxy mock catalogs and additional merger trees for both simulations as well as new large volume simulations with high resolution. This project is further proof of the viability to store and present complex data using relational database technology. We encourage other simulators to publish their results in a similar manner. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We study and review disk protoplanet interactions using local shearing box simulations. These suffer the disadvantage of having potential artefacts arising from periodic boundary conditions but the advantage, when compared to global simulations, of being able to capture much of the dynamics close to the protoplanet at high resolution for low computational cost. Cases with and without self sustained MHD turbulence are considered. The conditions for gap formation and the transition from type I migration are investigated and found to depend on whether the single parameter M p R 3/(M* H 3), with M p, M*, R, and H being the protoplanet mass, the central mass, the orbital radius and the disk semi-thickness, respectively, exceeds a number of order unity. We also investigate the coorbital torques experienced by a moving protoplanet in an inviscid disk. This is done by demonstrating the equivalence of the problem for a moving protoplanet to one where the protoplanet is in a fixed orbit which the disk material flows through radially as a result of the action of an appropriate external torque. For sustainable coorbital torques to be realized a quasi steady state must be realized in which the planet migrates through the disk without accreting significant mass. In that case, although there is sensitivity to computational parameters, in agreement with earlier work by Masset and Papaloizou [2003, ApJ, 588, 494] based on global simulations, the coorbital torques are proportional to the migration speed and result in a positive feedback on the migration, enhancing it and potentially leading to a runaway. This could lead to fast migration for protoplanets in the Saturn mass range in massive disks and may be relevant to the mass period correlation for extrasolar planets which gives a preponderance of sub Jovian masses at short orbital periods.  相似文献   

6.
2D hydrodynamical simulations are performed to examine the evaporation and condensation processes of giant molecular clouds in the hot phase of the interstellar medium. The evolution of cold and dense clouds (T = 1000 K, n H = 3 cm-3,M = 6·104 M) is calculated in the subsonic stream of a hot tenuous plasma (T = 5 ·106 K, n H = 6·10-4cm-3). Our code includes self-gravity, heating and cooling processes and heat conduction by electrons. The thermal conductivity of a fully ionized hydrogen plasma (κ ∝ T5/2) is applied as well as a saturated heat flux in regions where the mean free path of the electrons is large compared to the temperature scaleheight. Significant differences occur between simulations with and without heat conduction. In the simulations without heat conduction, the clouds outermost regions is stired up by Kelvin-Helmholtz (KH) instability after only a few dynamical times. This prevents an infiltration of a significant amount of hot gas into the cloud before its destruction. In contrast, models including heat conduction evolve less violently. The boundary of the cloud remains nearly unsusceptible to KH instabilities. In this scenario it is possible to mix the formerly hot streaming gas very effectively with the cloud material. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Dynamical evolution of globular clusters in the Large Magellanic Cloud (LMC) is investigated by means of N-body simulations; particular attention is paid to time evolution in the ellipticitical figure of globular clusters. The simulations were started with a binary globular cluster. It merged into a single cluster with ellipticity of about 0.3. The simulations were continued until the cluster became rounder due to the effects of two body relaxation and of tidal field of LMC. It is found that the outward angular momentum transport due to the gravothermal contraction makes the inner region rounder; the ellipticity at about the initial half-mass radius (r h) decreases with the e-folding time of 20 relaxation times. On the other hand, the outer region becomes rounder due to the stripping of stars by the tidal field; the ellipticity at about 3r h decreases with the e-folding time of 80 crossing times therein, though the time scale depends on the direction of the tidal field relative to the spin of the cluster. These two effects are comparable at about the half-mass radius. Taking account of such theoretical results we reanalyzed observed data for the ellipticity at about the half-mass radius of LMC clusters. We estimated the relaxation time and crossing time for each of the observed clusters, from which we calculated the effective time of getting round of the cluster. We plotted the observed ellipticity of the clusters against their non-dimensional age — i.e., the age normalized by the effective time. We found that observed ellipticity distribution is consistent with our picture.  相似文献   

8.
The stellar composition of the Tycho-2 Catalogue in the range B-V = 0· m 75–1· m 25 has been reproduced through Monte Carlo simulations. For young and old stars of the red giant clump (RGC), the red giant branch, subgiants, red dwarfs, and thick-disk giants, we have specified the distributions in coordinates, velocities, B-V, and M V as a function of B-V and calculated their reduced proper motions, photometric distances from the (B-V)-M V calibration, and photoastrometric distances from the reduced proper motion-M V calibration. Our simulations have shown the following: (1) a sample of thin-disk giants within 500 pc with an admixture of less than 10% of other stars can be produced; (2) a sample of dwarfs within 100 pc almost without any admixture of other stars can be produced; (3) the Local Spiral Arm affects the RGC composition of any magnitude-limited catalog in favor of giants younger than 2 Gyr; (4) the samples produced using reduced proper motions can be used for kinematic studies, provided that the biases of the quantities being determined are simulated and taken into account; (5) the photometric distances correlate with the photoastrometric ones because of the correlation between the proper motion and magnitude; (6) the photometric distances are closer to the true ones for the red giant branch and red dwarfs as the categories of stars with a clear (B-V)-M V relation, while the photoastrometric distances are closer to the true ones for the RGC, subgiants, and thick-disk giants; (7) the calculated distances differ systematically from the true ones, but they can be used to analyze the three-dimensional distribution of stars. Our simulations confirm the validity of our previous selection of RGC stars from Tycho-2.  相似文献   

9.
We report the results of numerical simulations of the instrumental signal in the Stokes V channel of circular polarization as observed by RATAN-600 radio telescope operating in the “Southern sector with a flat reflector” mode. Our simulations are based on an improved algorithm of the beam pattern computation that takes into account diffraction in the space between the telescope mirrors. The computations cover a wide range of wavelengths in the case of a focused antenna and in the presence of aberrations. We analyze the structure and properties of the element M 41 of the Mueller matrix and of the parasite signal from the solar disk in various cases of the antenna irradiation. We estimate the differences between the left- and right-polarization power-beam patterns of the telescope. We report the computed M 11 and M 41 elements for the case of observation of the right- and left-polarized radiation at different points of the focal line of the secondary mirror, and analyze their variations as a function of a number of parameters, including, in particular, the shift applied to correct the displacement of scans.  相似文献   

10.
Magnetic monopoles and antimonopoles with masses M=1016 Gev and charges q=68.5e in the early universe are considered. Pair production may occur as a result of their Coulomb interaction. Some conditions for formation of such pairs are discussed. In particular, numerical simulations of three particle collisions are carried out. Probabilities for pair production are found in terms of the N-body problem.  相似文献   

11.
We have compared the observed distribution of the quantity log(V 2 2 rP) for a sample of 233 pairs of galaxies with Monte-Carlo simulations. From such an analysis we have derived an average mass-to-luminosity ratiosM/L B =18±11. Our result is consistent with a linear increase of the mass with radius at least until distances of about 30 kpc.  相似文献   

12.
The velocity fluctuations in a spherical shell arising from sinusoidal perturbations of a Keplerian shear flow with a free amplitude parameter ε are studied numerically by means of fully 3D nonlinear simulations. The investigations are performed at high Reynolds numbers, i.e. 3000 < Re < 5000. We find Taylor‐Proudman columns of large eddies parallel to the rotation axis for sufficiently strong perturbations. An instability sets in at critical amplitudes with εcrit ∝ Re—1. The whole flow turns out to be almost axisymmetric and nonturbulent exhibiting, however, a very rich radial and latitudinal structure. The Reynolds stress 〈uruϕ〉 is positive in the entire computational domain, from its Gaussian radial profile a positive viscosity‐alpha of about 10—4 is derived. The kinetic energy of the turbulent state is dominated by the azimuthal component 〈u′2ϕ whereas the other components are smaller by two orders of magnitude. Our simulations reveal, however, that these structures disappear as soon as the perturbations are switched off. We did not find an “effective” perturbation whose amplitude is such that the disturbance is sustained for large times (cf. Dauchot & Daviaud 1995) which is due to the effective violation of the Rayleigh stability criterion. The fluctuations rapidly smooth the original profile towards to pure Kepler flow which, therefore, proves to be stable in that sense.  相似文献   

13.
Dynamical evolution of N-body bars embedded in spherical and prolate dark matter halos is investigated. In particular, the configuration such that galactic disks are placed in the plane perpendicular to the equatorial plane of the prolate halos is considered. Such a configuration is frequently found in cosmological simulations. N-body disks embedded in a fixed external halo potential were simulated, so that the barred structure was formed via dynamical instability in initially cool disks. In the subsequent evolution, bars in prolate halos dissolved gradually with time, while the bar pattern in spherical halos remained almost unchanged until the end of simulations. The e-folding time of bars suggest that they could be destroyed in a time smaller than a Hubble time. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
In recent years, the Lyman-α forest in quasar spectra has been used, together with N-body simulations, to determine the underlying matter distribution in the intergalactic medium (IGM). One of the key parameters to be known in order to compare observations and numerical simulations is the mean HI absorption in the IGM. To derive the latter, one has first to fit the quasar continuum. We have observed 20 high redshift and highly luminous QSOs (m V ≤ 17.5 and 2.40 ≤ z em ≤ 3.91) at intermediate spectral resolution, with either EMMI (ESO Multi-Mode Instrument) on the ESO-NTT telescope or CARELEC at the OHP (Observatoire de Haute-Provence), and applied different methods of determining the QSO continuum to this QSO sample. We have measured the amount of absorption, known as the flux decrement, DA, in the Lyman-α forest for these different methods and compared the results. In addition, we have compared DA values measured along the same lines of sight observed at high and intermediate spectral resolutions. We discuss the systematics resulting from the use of automatic continuum fitting methods.  相似文献   

15.
Self-consistent simulations of seven groups of galaxies with halos have been performed to find a constraint upon the size of missing halos around spiral galaxies. An initial galaxy, which consists of 100 superstars, has half-mass radius 41 kpc and central velocity dispersion 235 km s–1. The simulations start from the epoch of maximum expansion. The initial conditions involve a variety of spatial distributions of galaxies, and the velocity dispersion of galaxies as would be permitted for maximum expansion. Dense groups having collapse times shorter than (2/3)H 0 –1 are shown to form multiple mergers in a Hubble timeH 0 –1 . From a comparison of the frequencies of cD galaxies, or multiple mergers, in observed and simulated groups, it is concluded that the effective radius of missing halos is less than 41 kpc.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

16.
As a component of the Flash Center’s validation program, we compare FLASH simulation results with experimental results from Los Alamos National Laboratory. The flow of interest involves the lateral interaction between a planar M a = 1.2 shock wave with a cylinder of gaseous sulfur hexafluoride (SF6) in air, and in particular the development of primary and secondary instabilities after the passage of the shock. While the overall evolution of the flow is comparable in the simulations and experiments, small-scale features are difficult to match. We focus on the sensitivity of numerical results to simulation parameters.  相似文献   

17.
We present the results of very high resolution CDM simulations of galaxy formation designed to follow the formation and evolution of self-gravitating, supergiant star-forming clouds. We find that the mass spectrum of these clouds is identical to that of globular clusters and GMCs; dN/dMM -1.7 ± 0.1. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

18.
The decrease in the rms contrast of time-averaged images with the averaging time is compared between four data sets: (1) a series of solar granulation images recorded at La Palma in 1993, (2) a series of artificial granulation images obtained in numerical simulations by Rieutord et al. (Nuovo Cimento 25, 523, 2002), (3) a similar series computed by Steffen and his colleagues (see Wedemeyer et al. in Astron. Astrophys. 44, 1121, 2004), (4) a random field with some parameters typical of the granulation, constructed by Rast (Astron. Astrophys. 392, L13, 2002). In addition, (5) a sequence of images was obtained from real granulation images by using a temporal and spatial shuffling procedure, and the contrast of the average of n images from this sequence as a function of n is analysed. The series (1) of real granulation images exhibits a considerably slower contrast decrease than do both the series (3) of simulated granulation images and the series (4) of random fields. Starting from some relatively short averaging times t, the behaviour of the contrast in series (3) and (4) resembles the t −1/2 statistical law, whereas the shuffled series (5) obeys the n −1/2 law from n=2 on. Series (2) demonstrates a peculiarly slow decline of contrast, which could be attributed to particular properties of the boundary conditions used in the simulations. Comparisons between the analysed contrast-variation laws indicate quite definitely that the brightness field of solar granulation contains a long-lived component, which could be associated with locally persistent dark intergranular holes and/or with the presence of quasi-regular structures. The suggestion that the random field (4) successfully reproduces the contrast-variation law for the real granulation (Rast in Astron. Astrophys. 392, L13, 2002) can be dismissed.  相似文献   

19.
The interaction of an astrophysical shock with a cloud typically occurs at high Reynolds number, and in such cases will be highly turbulent. However, the formation of fully developed turbulence is usually prevented by the artificial viscosity inherent in hydrodynamical simulations. Upstream structures mean that the flow behind the shock is also likely to be turbulent, as it sweeps over such inhomogeneities. We study the nature of adiabatic shock-cloud interactions using a subgrid compressible kε turbulence model.  相似文献   

20.
Measurements of the lateral distribution function (ldf) of Extensive Air Showers (EAS) as recorded by the array of water- erenkov detectors at Haverah Park are described, and accurate experimental parameterizations expressing the mean ldf for 2 × 1017 < E < 4 × 1018 eV, 50 < r < 700 m, and θ < 45° are given. An extrapolation of these relations to the regime E ≥ 1019 eV and r > 700 m is described: extrapolation in this energy domain appears valid, and an approximate correction term is given for the larger core distances. The results of recent Monte Carlo simulations of shower development and detector behavior are compared to the parameterized ldf. The agreement is good increasing confidence that these simulations may be trusted as design tools for the Auger project, a proposed ‘next generation’ detector system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号