首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Miocene Karamağara volcanics (KMV) crop out in the Saraykent region (Yozgat) of Central Anatolia. The KMV include four principal magmatic components based on their petrography and compositional features: basaltic andesites (KMB); enclaves (KME); andesites (KMA); and dacites (KMD). Rounded and ellipsoidal enclaves occur in the andesites, ranging in diameter from a few millimetres to ten centimetres. A non‐cognate origin for the enclaves is suggested due to their mineralogical dissimilarity to the enclosing andesites. The enclaves range in composition from basaltic andesite to andesite. Major and trace element data and primitive mantle‐normalized rare‐earth element (REE) patterns of the KMV exhibit the effects of fractional crystallization on the evolution of the KME which are the product of mantle‐derived magma. The KMA contain a wide variety of phenocrysts, including plagioclase, clinopyroxene, orthopyroxene, hornblende and opaque minerals. Comparison of textures indicates that many of the hornblende phenocrysts within the KMA were derived from basaltic andesites (KMB) and are not primary crystallization products of the KMA. Evidence of disequilibrium in the hybrid andesite includes the presence of reacted hornblendes, clinopyroxene mantled by orthopyroxene and vice versa, and sieve‐texture and inclusion zones within plagioclase. The KMV exhibit a complex history, including fractional crystallization, magma mixing and mingling processes between mantle and crust‐derived melts. Textural and geochemical characteristics of the enclaves and their hosts require that mantle‐derived basic magma intruded the deep continental crust followed by fractional crystallization and generation of silicic melts from the continental material. Hybridization between basic and silicic melts subsequently occurred in a shallow magma chamber. Modelling of major element geochemistry suggests that the hybrid andesite represents a 62:38 mix of dacite and basaltic andesite. The implication of this process is that calc‐alkaline intermediate volcanic rocks in the Saraykent region represent hybrids resulting from mixing between basic magma derived from the mantle and silicic magma derived from the continental crust. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
 A variety of cognate basalt to basaltic andesite inclusions and dacite pumices occur in the 7-Ma Rattlesnake Tuff of eastern Oregon. The tuff represents ∼280 km3 of high-silica rhyolite magma zoned from highly differentiated rhyolite near the roof to less evolved rhyolite at deeper levels. The mafic inclusions provide a window into the processes acting beneath a large silicic chamber. Quenched basaltic andesite inclusions are substantially enriched in incompatible trace elements compared to regional primitive high-alumina olivine tholeiite (HAOT) lavas, but continuous chemical and mineralogical trends indicate a genetic relationship between them. Basaltic andesite evolved from primitive basalt mainly through protracted crystal fractionation and multiple cycles (≥10) of mafic recharge, which enriched incompatible elements while maintaining a mafic bulk composition. The crystal fractionation history is partially preserved in the mineralogy of crystal-rich inclusions (olivine, plagioclase ± clinopyroxene) and the recharge history is supported by the presence of mafic inclusions containing olivines of Fo80. Small amounts of assimilation (∼2%) of high-silica rhyolite magma improves the calculated fit between observed and modeled enrichments in basaltic andesite and reduces the number of fractionation and recharge cycles needed. The composition of dacite pumices is consistent with mixing of equal proportions of basaltic andesite and least-evolved, high-silica rhyolite. In support of the mixing model, most dacite pumices have a bimodal mineral assemblage with crystals of rhyolitic and basaltic parentage. Equilibrium dacite phenocrysts are rare. Dacites are mainly the product of mingling of basaltic andesite and rhyolite before or during eruption and to a lesser extent of equilibration between the two. The Rattlesnake magma column illustrates the feedback between mafic and silicic magmas that drives differentiation in both. Low-density rhyolite traps basalts and induces extensive fractionation and recharge that causes incompatible element enrichment relative to the primitive input. The basaltic root zone, in turn, thermally maintains the rhyolitic magma chamber and promotes compositional zonation. Received: 1 June 1998 / Accepted: 5 February 1999  相似文献   

3.
浙江新昌早白垩世复合岩流中的岩浆混合作用   总被引:35,自引:7,他引:35  
周金城  俞云文 《岩石学报》1994,10(3):236-247
浙江新昌拔茅地区早白垩世复合岩流中各种火山岩(Rb-Sr等时线年龄为96.3Ma)属高钾钙碱性岩系,在其中发现了中生代火山活动中岩浆混合作用的确凿证据,岩相学及地球化学研究表明,这种复合岩流中的安山质岩浆是由同时代橄榄拉斑玄武岩浆和流纹岩浆相互混合而形成的。  相似文献   

4.
Lavas from Medicine Lake volcano, Northern California have been examined for evidence of magma mixing. Mixing of magmas has produced basaltic andesite, andesite, dacite and rhyolite lavas at the volcano. We are able to identify the compositional characteristics of the components that were mixed and to estimate the time lag between the mixing event and eruption of the mixed magma. Compositional data from pairs of phenocrysts identify a high alumina basalt (HAB) and a silicic rhyolite as endmembers of mixing. Mg-rich olivine or augite and Ca-rich plagioclase are associated with the HAB component, and Fe-rich orthopyroxene and Na-rich plagioclase are associated with the rhyolitic component. Some lavas contain multiple phenocryst assemblages suggesting the incorporation of several magmas intermediate between the HAB and silicic components. Glass inclusions trapped in Mg-rich olivine and Na-rich plagioclase are similar in composition to the proposed HAB and rhyolite end members and provide supportive evidence for mixing. Textural criteria are also consistent with magma mixing. Thermal curvature of the liquidus surfaces in the basalt-andesite-rhyolite system allows magmas produced by mixing to be either supercooled or superheated. Intergranular textures of basaltic andesites and andesites result from cooling initiated below the liquidus. The trachytic textures of silicic andesites form from cooling initiated above the liquidus. Reversed compositional zoning profiles in olivine crystals were produced by the mixing event, and the homogenization of the compositional zoning has been used to estimate the time interval between magma mixing and eruption. Time estimates are on the order of 80 to 90 h, suggesting that the mixing event triggered eruption.  相似文献   

5.
花岗岩结晶分离作用问题——关于花岗岩研究的思考之二   总被引:26,自引:15,他引:11  
岩浆结晶分离作用是一个古老的话题,很早就有学者指出,地球内部生成的岩浆大多是玄武质岩浆,大多数花岗岩是由玄武岩结晶分离形成的.本文在考察了岩浆结晶分离作用的制约因素、比较了不同性质岩浆结晶分离作用的特征之后指出:玄武质岩浆可以发生结晶分离作用,因为有与其相关的堆晶岩产出;安山质岩浆也可以发生结晶分离作用,因为也有与其相关的堆晶岩产出.但是,花岗质岩浆似乎不大可能发生结晶分离作用,因为,很少见到有与(富硅的)花岗质岩浆相伴的堆晶岩产出.花岗质岩浆之所以不大可能发生结晶分离作用的原因在于:(1)岩浆的黏性大,它不仅阻滞了矿物的结晶作用(使斜长石不能发育为自形晶),而且阻止了密度大的矿物(例如角闪石)下沉;(2)主要造岩矿物(例如斜长石)的密度与花岗质岩浆的密度相差无几,使结晶分离作用难以进行.本文详细考察了花岗质岩浆中斜长石的行为,指出在花岗质岩浆中斜长石结晶分离几乎是不可能的.那么,文献中大量充斥的花岗岩结晶分离作用的说法是依据什么呢?作者认为,文献中的许多说法可能主要是根据哈克图解得出的,而不是根据实际观察和理论研究得出的.作者认为,玄武岩和花岗岩不仅来源不同,成分不同,而且解释也不同.哈克图解中许多适合玄武岩的解释未必适合花岗岩.由于鲍文反应原理是结晶分离作用的理论基础,因此,文中也对鲍文反应原理进行了评述,并指出文献中存在的一些需要认真对待的问题,例如,从玄武岩-安山岩-英安岩-流纹岩的连续演化序列是不可能的;单元-超单元填图方法是不科学的;中国东部中生代大规模花岗岩不可能是玄武质岩浆结晶分离形成的等等.本文还以Ajaji et al.(1998)报道的摩洛哥Tanncherfi花岗岩为例,指出结晶分离作用的解释是不可能的.作者认为,花岗岩类的成分变化大,主要可能与源区组成、温度、压力、挥发分、部分熔融程度和过程、混合作用、岩浆分异及结晶分离作用有关.其中,源区组成可能是花岗岩多样性的最重要的原因,而结晶分离作用的影响可能是微乎其微的.本文认为,花岗岩结晶分离作用对于花岗岩成因的意义已经被大大地夸大了,我们应当重新思考结晶分离作用对于花岗质岩浆的意义.由于花岗岩的极端复杂性,许多问题还得不到比较合理的解释,本文的认识只是初步的.  相似文献   

6.
西南极菲尔德斯半岛第三纪火山岩的岩石学和岩石化学特征表明,它们基本属于钙碱性火山岩系列,是岛弧火山作用的产物。该岩石组合中,随岩石中SiO_2含量的增加,斜长石斑晶数量减少,微量元素Cr、V丰度降低,Sr、Ba丰度下降,这些揭示了岩浆中斜长石和单斜辉石的分离结晶作用。稀土元素的系统变化也证明了这一点。主元素和微量元素的定量计算所验证了岩浆的分离结晶作用演化过程。  相似文献   

7.
Sugarloaf Mountain is a 200-m high volcanic landform in central Arizona, USA, within the transition from the southern Basin and Range to the Colorado Plateau. It is composed of Miocene alkalic basalt (47.2–49.1?wt.% SiO2; 6.7–7.7?wt.% MgO) and overlying andesite and dacite lavas (61.4–63.9?wt.% SiO2; 3.5–4.7?wt.% MgO). Sugarloaf Mountain therefore offers an opportunity to evaluate the origin of andesite magmas with respect to coexisting basalt. Important for evaluating Sugarloaf basalt and andesite (plus dacite) is that the andesites contain basaltic minerals olivine (cores Fo76-86) and clinopyroxene (~Fs9-18Wo35-44) coexisting with Na-plagioclase (An48-28Or1.4–7), quartz, amphibole, and minor orthopyroxene, biotite, and sanidine. Noteworthy is that andesite mineral textures include reaction and spongy zones and embayments in and on Na-plagioclase and quartz phenocrysts, where some reacted Na-plagioclases have higher-An mantles, plus some similarly reacted and embayed olivine, clinopyroxene, and amphibole phenocrysts.Fractional crystallization of Sugarloaf basaltic magmas cannot alone yield the andesites because their ~61 to 64?wt.% SiO2 is attended by incompatible REE and HFSE abundances lower than in the basalts (e.g., Ce 77–105 in andesites vs 114–166?ppm in basalts; Zr 149–173 vs 183–237; Nb 21–25 vs 34–42). On the other hand, andesite mineral assemblages, textures, and compositions are consistent with basaltic magmas having mixed with rhyolitic magmas, provided the rhyolite(s) had relatively low REE and HFSE abundances. Linear binary mixing calculations yield good first approximation results for producing andesitic compositions from Sugarloaf basalt compositions and a central Arizona low-REE, low-HFSE rhyolite. For example, mixing proportions 52:48 of Sugarloaf basalt and low incompatible-element rhyolite yields a hybrid composition that matches Sugarloaf andesite well ? although we do not claim to have exact endmembers, but rather, viable proxies. Additionally, the observed mineral textures are all consistent with hot basalt magma mixing into rhyolite magma. Compositional differences among the phenocrysts of Na-plagioclase, clinopyroxene, and amphibole in the andesites suggest several mixing events, and amphibole thermobarometry calculates depths corresponding to 8–16?km and 850° to 980?°C. The amphibole P-T observed for a rather tight compositional range of andesite compositions is consistent with the gathering of several different basalt-rhyolite hybrids into a homogenizing ‘collection' zone prior to eruptions. We interpret Sugarloaf Mountain to represent basalt-rhyolite mixings on a relatively small scale as part of the large scale Miocene (~20 to 15 Ma) magmatism of central Arizona. A particular qualification for this example of hybridization, however, is that the rhyolite endmember have relatively low REE and HFSE abundances.  相似文献   

8.
Quizapu is part of a linear system of active volcanos in central Chile. The volcanic petrology and geology have been used to infer the plumbing system beneath the volcano. The 1846–1847 eruption (~5 km3) started with small flows of dacite, then changed to a range of andesite–dacite compositions and finally terminated with large flows of dacite. Andesitic enclaves (<10 %) occur in some of these flows. Activity restarted explosively in 1932 (~4 km3 DRE) with an initial andesite–dacite ash, followed by uniform dacite ash and then a terminal andesite ash. All samples, including the enclaves, have chemical compositions that lie on an almost perfect mixing line, with a few exceptions. The abundant plagioclase macrocrysts in the matrix were divided into five petrographic classes on the basis of colour in cold-cathode cathodoluminescence images and zonation in visible light. All populations of macrocrysts have CSDs characteristic of coarsening, although they differ in detail. Two classes can be ascribed to growth in andesite and dacite magmas, but the three other classes are associated with particular magma batches. A model is developed which started with ponding of andesite magma in the crust. This differentiated to produce a dacite magma, most of which probably solidified to make a granodiorite batholith. Activation of a N–S fault enabled volcanism: andesite magma traversed the dacite-filled chamber, heating and raising it up into storage areas hosted by the fault, where it mixed to form a homogeneous magma. A short time before the 1846–1847 eruption, more andesite magma was injected into the shallow part of the system where it mingled with existing mixed magmas. The first magma to be erupted from Quizapu was a dacite, but soon other storage areas along the fault started to feed the system—first mixed magmas, then back to dacites. The eruption then terminated until 1932 when renewed injection of andesite into the system created a conduit that tapped an undegassed dacite chamber and resulted in a strong explosive eruption. The whole story is one of continual andesite magmatism, modulated by storage, degassing and mixing.  相似文献   

9.
Trace element systematics throughout the cal-calkaline high alumina basalt — basaltic andesite — andesite — dacite — rhyodacite lavas and dyke rocks of the Main Volcanic Series of Santorini volcano, Greece are consistent with the crystal fractionation of observed phenocryst phases from a parental basaltic magma as the dominant mechanism involved in generating the range of magmatic compositions. Marked inflection points in several variation trends correspond to changes in phenocryst mineralogy and divide the Main Series into two distinct crystallisation intervals — an early basalt to andesite stage characterised by calcic plagioclase+augite+olivine separation and a later andesite to rhyodacite stage generated by plagioclase augite+hypersthene+magnetite+apatite crystallisation. Percent solidification values derived from ratios of highly incompatible trace elements agree with previous values derived from major element data using addition-subtraction diagrams and indicate that basaltic andesites represent 47–69%; andesites 70–76%; dacites ca. 80% and rhyodacite ca. 84% crystallisation of the initial basalt magma. Least squares major element mixing calculations also confirm that crystal fractionation of the least fractionated basalts could generate derivative Main Series lavas, though the details of the least squares solutions differ significantly from those derived from highly incompatible element and addition-subtraction techniques. Main Series basalts may result from partial melting of the mantle asthenosphere wedge followed by limited olivine+pyroxene+Cr-spinel crystallisation on ascent through the sub-Aegean mantle and may fractionate to more evolved compositions at pressures close to the base of the Aegean crust. Residual andesitic to rhyodacite magmas may stagnate within the upper regions of the sialic Aegean crust and form relatively high level magma chambers beneath the southern volcanic centres of Santorini. The eruption of large volumes of basic lavas and silicic pyroclastics from Santorini may have a volcanological rather than petrological explanation.  相似文献   

10.
The Loch Ba ring-dyke in the Tertiary igneous central complex of Mull, N.W. Scotland is composed predominantly of a banded rhyolitic welded tuff. The rhyolite contains numerous inclusions of dark aphanitic rock. The textural relationships between the different rocks indicate rapid, violent and intimate mixing during emplacement of the dyke. The dark glassy component varies continuously from basaltic andesite to andesite, dacite and rhyolite. These glasses are enriched in FeO and depleted in MgO at a given SiO2 content in comparison to other tholeiitic highly differentiated volcanic rocks. The rhyolite contains an average of 4% phenocrysts and is associated with the mineral assemblage plagioclase (An32 to An21)-sanidine(Or50–60)-hedenbergite-fayalite-magnetite-ilmenite-apatite-zircon. Mineral aggregates involving either plagioclase-hedenbergite-ilmenite or plagioclase-fayalite-magnetite are common, but aggregates containing fayalite and hedenbergite together are scarce. The dark glassy components are either phenocryst free or contain less than 0.2% phenocrysts. The main phenocrysts associated with the dark glasses are plagioclase (An65-An30), high calcium clinopyroxene ranging continuously from augite to pure hedenbergite, pigeonite, magnetite, ilmenite and rare apatite. Zoning in minerals is generally weak or absent. The plagioclase feldspar, high calcium clinopyroxenes and pigeonites have similar compositional ranges to the minerals observed in the Middle and Upper Zones of the Skaergaard Intrusion. The mineral compositions are systematically related to SiO2 content and Mg number of the glasses. The data demonstrate that mineral compositions and assemblages similar to the Skaergaard form from silica-rich andesitic to rhyolitic liquids. The various mafic glasses are interpreted to have been derived from a zoned magma chamber underlying an upper layer of rhyolitic magma. Differentiation is attributed to fractional crystallization of the observed mineral assemblages causing SiO2 enrichment and FeO depletion. However, glasses with less than 57% SiO2 have unusual compositions with very low MgO and P2O5 as well as variable Al2O3 and TiO2. Their peculiarities could be explained by andesitic magmas assimilating cumulate mineral aggregates precipitated from more differentiated dacite and rhyolite magmas. The bulk compositions of these cumulates have high FeO, low SiO2 and negligible MgO and P2O5. It is suggested that the high density of the mineral aggregates containing fayalite-hedenbergite-magnetite and ilmenite caused them to settle through the zoned chamber to be assimilated by high temperature, less differentiated magmas.  相似文献   

11.
Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone.Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55–61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted.The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller T. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted.  相似文献   

12.
天目山火山岩的反序现象及其成因   总被引:2,自引:0,他引:2  
浙江天目山地区的中生代火山岩由流纹岩、英安岩、安山岩组成,其喷发存在反序现象。笔者用带状岩浆房的模式解释了该区火山岩的特点,应用各种物理化学方法建立了岩浆房中存在的温度、密度和粘度梯度。主要元素及微量元素的行为及其定量模拟表明,分离结晶是导致岩浆成分变化的主要机理。然而,各种矿物在岩浆房中的沉降速度计算表明,尤其是酸性岩浆中,晶体的重力沉降是不可能的。因此,岩浆房中存在的分离结晶现象主要是通过对分离作用进行的。  相似文献   

13.
A wide variety of rock types are present in the O'Leary Peak and Strawberry Crater volcanics of the Pliocene to Recent San Francisco Volcanic Field (SFVF), AZ. The O'Leary Peak flows range from andesite to rhyolite (56–72 wt % SiO2) and the Strawberry Crater flows range from basalt to dacite (49–64 wt % SiO2). Our interpretation of the chemical data is that both magma mixing and crustal melting are important in the genesis of the intermediate composition lavas of both suites. Observed chemical variations in major and trace elements can be modeled as binary mixtures between a crustal melt similar to the O'Leary dome rhyolite and two different mafic end-members. The mafic end-member of the Strawberry suite may be a primary mantle-derived melt. Similar basalts have also been erupted from many other vents in the SFVF. In the O'Leary Peak suite, the mafic end-member is an evolved (low Mg/(Mg+ Fe)) basalt that is chemically distinct from the Strawberry Crater and other vent basalts as it is richer in total Fe, TiO2, Al2O3, MnO, Na2O, K2O, and Zr and poorer in MgO, CaO, P2O5, Ni, Sc, Cr, and V. The derivative basalt probably results from fractional crystallization of the more primitive, vent basalt type of magma. This evolved basalt occurs as xenolithic (but originally magmatic) inclusions in the O'Leary domes and andesite porphyry flow. The most mafic xenolith may represent melt that mixed with the O'Leary dome rhyolite resulting in andesite preserved as other xenoliths, a pyroclastic unit (Qoap), porphyry flow (Qoaf) and dacite (Darton Dome) magmas. Thermal constraints on the capacity of a melt to assimilate (and melt) a volume of solid material require that melt mixing and not assimilation has produced the observed intermediate lavas at both Strawberry Crater and O'Leary Peak. Textures, petrography, and mineral chemistry support the magma mixing model. Some of the inclusions have quenched rims where in contact with the host. The intermediate rocks, including the andesite xenoliths, contain xenocrysts of quartz, olivine and oligoclase, together with reversely zoned plagioclase and pyroxene phenocrysts. The abundance of intermediate volcanic rocks in the SFVF, as observed in detail at O'Leary Peak and Strawberry Crater, is due in part to crustal recycling, the result of basalt-driven crustal melting and the subsequent mixing of the silicic melts with basalts and derivative magmas.  相似文献   

14.
Dikii Greben' Volcano is the largest modern volcano with silicic rocks in the Kurile-Kamchatka island arc. It consists of many domes and lava flows of rhyodacite, dacite and andesite which were erupted in a reverse differentiation sequence. Non-equilibrium phenocryst assemblages (quartz + Mg-rich olivine, An-rich + An-poor plagioclase etc.), abundance of chilled mafic pillows in the dacites and andesites, and linear variations of rock compositions in binary plots are considered as mineralogical, textural and geochemical evidence for mixing. Mafic pillows in volcanics have a lower density (because of high porosity) and contain the same non-equilibrium phenocryst assemblages as the host rocks. Their groundmass contains skeletal microlites of plagioclase and amphibole proving that the groundmass as well as the pillows themselves formed from a water-rich basaltic magma at depth. They are considered as supercooled, vesiculated floating drops of a hot hybrid layer in the magma chamber which formed after refilling. The lower density of the inclusions allows them to float in the host magma and to concentrate at the top of the chamber prior to eruption. Magma mingling was effected by mechanical disintegration of the inclusions in the host magma during eruption. The rhyodacitic and basic end-members of the mixing series cannot be linked by low-P fractionation though high-P, amphibole-rich fractionation is not excluded.  相似文献   

15.
Study of the data provided by Stanton and Bell (1969) for certain basaltic rocks from the New Georgia Group reveals an apparent discrepancy between compositional variation and the sequence of phenocryst phases available for fractionation. The discrepancy none-the-less appears explicable in terms of two low-pressure crystal fractionation mechanisms. The first of these we term compensated crystal settling, a process which, it is postulated, allows a substantial amount of magma undergoing crystal settling to maintain its overall composition since crystals settling from it are continually replaced by compositionally similar crystals which settle into it from higher levels. The second process involves selective fractionation of phases sinking at different rates. Slow sinking of plagioclase relative to ferromagnesian minerals is believed to produce cumulus enrichment in plagioclase in the upper part of the chamber, the resultant magmas being erupted as highly porphyritic, high-alumina, basaltic andesites.  相似文献   

16.
Quaternary basalts, andesites and dacites from the Abu monogenetic volcano group, SW Japan, (composed of more than 40 monogenetic volcanoes) show two distinct chemical trends especially on the FeO*/MgO vs SiO2 diagram. One trend is characterized by FeO*/MgO-enrichment with a slight increase in SiO2 content (Fe-type trend), whereas the other shows a marked SiO2-enrichment with relatively constant FeO*/MgO ratios (Si-type trend). The Fe-type trend is explained by fractional crystallization with subtraction of olivine and augite from a primitive alkali basalt magma. Rocks of the Si-type trend are characterized by partially melted or resorbed quartz and sodic plagioclase phenocrysts and/or fine-grained basaltic inclusions. They are most likely products of mixing of a primitive alkali basalt magma containing olivine phenocrysts with a dacite magma containing quartz, sodic plagioclase and hornblende phenocrysts. Petrographic variation as well as chemical variation from basalt to dacite of the Si-type trend is accounted for by various mixing ratios of basalt and dacite magmas. Pargasitic hornblende and clinopyroxene phenocrysts in andesite and dacite may have crystallized from basaltic magma during magma mixing. Olivine and spinel, and quartz, sodic plagioclase and common hornblende had crystallized in basaltic and dacitic magmas, respectively, before the mixing. Within a lava flow, the abundance of basaltic inclusions decreases from the area near the eruptive vent towards the perimeter of the flow, and the number of resorbed phenocrysts varies inversely, suggesting zonation in the magma chamber.The mode of mixing changes depending on the mixing ratio. In the mafic mixture, basalt and dacite magmas can mix in the liquid state (liquid-liquid mixing). In the silicic mixture, on the other hand, the basalt magma was quenched and formed inclusions (liquid-solid mixing). During mixing, the disaggregated basalt magma and the host dacite magma soon reached thermal equilibrium. Compositional homogenization of the mixed magma can occur only when the equilibrium temperature is sufficiently above the solidus of the basalt magma. The Si-type trend is chemically and petrographically similar to the calc-alkalic trend. Therefore, a calc-alkalic trend which is distinguished from a fractional crystallization trend (e.g. Fe-type trend) may be a product of magma mixing.  相似文献   

17.
A. nal 《Geological Journal》2008,43(1):95-116
The Middle Miocene Orduzu volcanic suite, which is a part of the widespread Neogene Yamadağ volcanism of Eastern Anatolia, consists of a rhyolitic lava flow, rhyolitic dykes, a trachyandesitic lava flow and basaltic trachyandesitic dykes. Existence of mafic enclaves and globules in some of the volcanic rocks, and microtextures in phenocrysts indicate that magma mingling and mixing between andesitic and basaltic melts played an important role in the evolution of the volcanic suite. Major and trace element characteristics of the volcanic rocks are similar to those formed in convergent margin settings. In particular, incompatible trace element patterns exhibit large depletions in high field strength elements (Nb and Ta) and strong enrichments in both large ion lithofile elements (Ba, Th and U) and light rare earth elements, indicating a strong subduction signature in the source of the volcanic rocks. Furthermore, petrochemical data obtained suggest that parental magmas of rhyolite lava and dykes, and trachyandesite lava and basaltic trachyandesite dykes were derived from subduction‐related enriched lithospheric mantle and metasomatized mantle (± asthenosphere), respectively. A detailed mineralogical study of the volcanic suite shows that plagioclase is the principal phenocryst phase in all of the rock units from the Orduzu volcano. The plagioclase phenocrysts are accompanied by quartz in the rhyolitic lava flows and by two pyroxenes in the trachyandesitic lava flows and basaltic trachyandesitic dykes. Oxide phases in all rocks are magnetite and ilmenite. Calculated crystallization temperatures range from 650°C to 800°C for plagioclase, 745°C–1054°C for biotite, 888°C–915°C for pyroxene and 736°C–841°C for magnetite–ilmenite pairs. Calculated crystallization pressures of pyroxenes vary between 1.24–5.81 kb, and oxygen fugacity range from −14.47 to −12.39. The estimates of magmatic intensive parameters indicate that the initial magma forming the Orduzu volcanic unit began to crystallize in a high‐level magma chamber and then was stored in a shallow reservoir where it underwent intermediate‐mafic mixing. The rhyolitic lava flow and dykes evolved in relatively shallower crustal magma chambers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Volcán San Pedro in the Andean Southern Volcanic Zone(SVZ) Chile, comprises Holocene basaltic to dacitic lavas withtrace element and strontium isotope ratios more variable thanthose of most Pleistocene lavas of the underlying Tatara–SanPedro complex. Older Holocene activity built a composite coneof basaltic andesitic and silicic andesitic lavas with traceelement ratios distinct from those of younger lavas. Collapseof the ancestral volcano triggered the Younger Holocene eruptivephase including a sequence of lava flows zoned from high-K calc-alkalinehornblende–biotite dacite to two-pyroxene andesite. Notably,hornblende–phlogopite gabbroic xenoliths in the daciticlava have relatively low 87Sr/86Sr ratios identical to theirhost, whereas abundant quenched basaltic inclusions are moreradiogenic than any silicic lava. The latest volcanism rebuiltthe modern 3621 m high summit cone from basaltic andesite thatis also more radiogenic than the dacitic lavas. We propose thefollowing model for the zoned magma: (1) generation of hornblende–biotitedacite by dehydration partial melting of phlogopite-bearingrock similar to the gabbroic xenoliths; (2) forceful intrusionof basaltic magma into the dacite, producing quenched basalticinclusions and dispersion of olivine and plagioclase xenocryststhroughout the dacite; (3) cooling and crystallization–differentiationof the basalt to basaltic andesite; (4) mixing of the basalticandesite with dacite to form a small volume of two-pyroxenehybrid andesite. The modern volcano comprises basaltic andesitethat developed independently from the zoned magma reservoir.Evolution of dacitic and andesitic magma during the Holoceneand over the past 350 kyr reflects the intrusion of multiplemafic magmas that on occasion partially melted or assimilatedhydrous gabbro within the shallow crust. The chemical and isotopiczoning of Holocene magma at Volcán San Pedro is paralleledby that of historically erupted magma at neighboring VolcánQuizapu. Consequently, the role of young, unradiogenic hydrousgabbro in generating dacite and contaminating basalt may beunderappreciated in the SVZ. KEY WORDS: Andes; dacite; gabbro; Holocene; strontium isotopes  相似文献   

19.
《Geodinamica Acta》2013,26(5):343-362
The Mendejin area, NW Iran, is part of the western Alborz-Azarbaijan zone which is one of the most structurally—and magmatically-active zones of Iran. Volcanic rocks with calc-alkaline and, locally, alkaline features cover an extensive part of this zone. The Mendejin volcanic rocks, Eocene-Oligocene in age, include tuffs and volcanoclastic rocks of dacite, andesite, basaltic andesite, and basalt composition. Felsic (andesite, dacite, and rhyodacite) and basic rocks (basalt, basaltic andesite and andesite) commonly occur in successive layers. This alternation along with multiple occurrences of various types of tuffs suggests prolonged and successive magmatic activity during Eocene-Oligocene in NW Iran. Fractional crystallization has been the most important factor controlling geochemical characteristics of the magma. However, absence of linear correlations on variation diagrams of some immobile elements (such as Al2O3, TiO2, P2O5 and Ga) and poorly-developed trends on variation diagrams of Na2O, MgO, MnO, CaO, Fe2O3, Nb, Nd, Y, La, Ce, Th, Hf, Sc, Zn, V, Ni and Co versus SiO2 indicate that, other than crystal (olivine, pyroxene, plagioclase, biotite, hornblende, zircon, monazite and apatite) fractionation, crustal processes (such as assimilation) have also affected the chemistry of the Mendejin magma. It appears that the basic magma has originated from the mantle whereas the felsic magma resulted from modification in the mantle-derived magma by assimilation in an active continental margin.  相似文献   

20.
The 1.3 Ma Purico complex is part of an extensive Neogene-Pleistocene ignimbrite province in the central Andes. Like most other silicic complexes in the province, Purico is dominated by monotonous intermediate ash-flow sheets and has volumetrically minor lava domes. The Purico ignimbrites (total volume 80-100 km3) are divided into a Lower Purico Ignimbrite (LPI) with two extensive flow units, LPI I and LPI II; and a smaller Upper Purico Ignimbrite (UPI) unit. Crystal-rich dacite is the dominant lithology in all the Purico ignimbrites and in the lava domes. It is essentially the only lithology present in the first LPI flow unit (LPI I) and in the Upper Purico Ignimbrite, but the LPI II flow unit is unusual for its compositional diversity. It constitutes a stratigraphic sequence with a basal fall-out deposit containing rhyolitic pumice (68-74 wt% SiO2) overlain by ignimbrite with dominant crystal-rich dacitic pumice (64-66 wt% SiO2). Rare andesitic and banded pumice (60-61 wt% SiO2) are also present in the uppermost part of the flow unit. The different compositional groups of pumice in LPI II flow unit (rhyolite, andesite, dacite) have initial Nd and Sr isotopic compositions that are indistinguishable from each other and from the dominant dacitic pumice ()Nd=-6.7 to -7.2 and 87Sr/86Sr=0.7085-0.7090). However, two lines of evidence show that the andesite, dacite and rhyolite pumices do not represent a simple fractionation series. First, melt inclusions trapped in sequential growth zones of zoned plagioclase grains in the rhyolite record fractionation trends in the melt that diverge from those shown by dacite samples. Second, mineral equilibrium geothermometry reveals that dacites from all ignimbrite flow units and from the domes had relatively uniform and moderate pre-eruptive temperatures (780-800 °C), whereas the rhyolites and andesites yield consistently higher temperatures (850-950 °C). Hornblende geobarometry and pressure constraints from H2O and CO2 contents in melt inclusions indicate upper crustal (4-8 km) magma storage conditions. The petrologic evidence from the LPI II system thus indicates an anomalously zoned magma chamber with a rhyolitic cap that was hotter than, and chemically unrelated to, the underlying dacite. We suggest that the hotter rhyolite and andesite magmas are both related to an episode of replenishment in the dacitic Purico magma chamber. Rapid and effective crystal fractionation of the fresh andesite produced a hot rhyolitic melt whose low density and viscosity permitted ascent through the chamber without significant thermal and chemical equilibration with the resident dacite. Isotopic and compositional variations in the Purico system are typical of those seen throughout the Neogene ignimbrite complexes of the Central Andes. These characteristics were generated at moderate crustal depths (<30 km) by crustal melting, mixing and homogenization involving mantle-derived basalts. For the Purico system, assimilation of at least 30% mantle-derived material is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号