首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Regional and detailed gravity surveys over Carboniferous rocks in northeast Wales have revealed an elongated Bouguer anomaly low over part of the outcrop of the Cefn-y-Fedw Sandstone Group. The anomaly has a pronounced gradient over the boundary of these sediments with the limestones of the underlying Viséan Series, but downdip, to the east, the anomaly merges with the general decrease of Bouguer anomaly values. The anomaly can be explained if the thickness of the lower density Cefn-y-Fedw Sandstone Group increases abruptly along the margin of the outcrop of these rocks. Various explanations for this are considered including faulting, a syncline. and channel-like deposits. The interpretation is further complicated by the presence of sandstones with densities varying between 2·2 Mg m−1 and 2·6 Mg m−3 Although a full explanation is not possible without further evidence, the existence of the Bouguer anomaly low necessitates a review of the nature of the Cefn-y-Fedw Sandstone Group.  相似文献   

2.
Summary The structures of the Somma-Vesuvius volcanic complex are modelled on the basis of the interpretation of gravity anomalies obtained from data available in the literature and acquired along a new profile along the coastline from Naples to Castellammare di Stabia. In order to highlight the contribution of shallow crustal structures, the residual anomalies were considered. A marked gravity low was recognised in the eastern sector of Vesuvius. Furthermore data interpretation was carried out along two profiles centred on the low gravity region in question: a first profile crossing the Vesuvius crater in direction WNW-ESE, and a second one in NNE-SSW direction. The 2 ? D model obtained reveals a crustal structure characterised by sediments of 2.3 Mg/m3 density, overlying bedrock with a density of 2.6 Mg/m3. Near the volcanic system the model becomes more complex due to the presence of light sediments with a density of 2.1 Mg/m3 overlying a body with a density of 2.4 Mg/m3 which extends into depth. The latter is thought to be closely related to the zone of magma ascent developed along the volcanic axis. Along the coast the volcanic component is reduced and the model shows that the layer with a density of 2.3 Mg/m3 ranges in thickness from 0 to about 3500 m. An additional body between 1500 and 3000 m with a density of 2.4 Mg/m3 was considered in order to account for the slight rise in the residual anomaly in the area in the vicinity of Mt. Vesuvius. The analysis of the gravity anomaly pattern coincides with the complex system of faults and fractures intersecting the carbonate basement and the volcanic area in question, which developed as a consequence of extensional processes at the continental edge of the Italian Peninsula due to the opening of the Tyrrhenian basin. This extensional tectonics has created favourable conditions for the collapse of the south-western slope of Mt. Vesuvius and the development of eruptive vents and cracks on its flanks. Received May 18, 2000; revised version accepted March 6, 2001  相似文献   

3.
The area of the present study constitutes an alkaline volcanic province in the eastern sector of the Rhenish massif. A series of gravity measurements were carried out on the volcanic fields of the Westerwald. Three-dimensional modelling and wavelength filtering processing techniques were used to analyze the gravity data. The filtered Bouguer anomaly maps show two major regional gravity features: (a) Increasing Bouguer values towards the northeastern part of the study area could be caused by lateral lithological variations within the upper crust. (2) Local negative Bouguer values in the southwest correlate with magmatic materials of intermediate type. The modelling results indicate that the volcanics of the Westerwald are underlain by two different magmatic complexes at a depth in the range 3.3–10 km with density values of 2680 and 2750 kg/m3. The densities assigned to the local igneous intrusions are in the range of 2314–2948 kg/m3 and at depths between 0.4 and 1.3 km. In the NE a diabase bed was modelled to a maximum depth of approximately 1.6 km using the assigned density of 2800 kg/m3.  相似文献   

4.
The western continental margin and the intraplate Narmada-Tapti rifts are primarily covered by Deccan flood basalts. Three-dimensional gravity modeling of +70mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, mafic-ultramafic type, elongated, roughly ellipsoidal body. It is approximately 12.0 ±1.2 km thick with its upper surface at an approximate depth of 6.0 ±0.6 km, and its average density is {dy2935} kg/m3. Calculated dimension of the high density body in the upper crust is 300 ±30 km in length and 25 ±2.5 to 40 ±4 km in width. Three-dimensional gravity modeling of +10mgal to -30mgal Bouguer gravity highs along the intraplate Narmada-Tapti rift indicates the presence of eight small isolated high density mafic bodies with an average density of {dy2961} kg/m3. These mafic bodies are convex upward and their top surface is estimated at an average depth of 6.5 ±0.6 (between 6 and 8km). These isolated mafic bodies have an average length of 23.8 ±2.4km and width of 15.9 ±1.5km. Estimated average thickness of these mafic bodies is 12.4±1.2km. The difference in shape, length and width of these high density mafic bodies along the western continental margin and the intraplate Narmada-Tapti rifts suggests that the migration and concentration of high density magma in the upper lithosphere was much more dominant along the western continental margin rift. Based on the three-dimensional gravity modeling, it is conjectured that the emplacement of large, ellipsoidal high density mafic bodies along the western continental margin and small, isolated mafic bodies along the Narmada-Tapti rift are related to lineament-reactivation and subsequent rifting due to interaction of hot mantle plume with the lithospheric weaknesses (lineaments) along the path of Indian plate motion over the Réunion hotspot. Mafic bodies formed in the upper lithosphere as magma chambers along the western continental margin and the intraplate Narmada-Tapti rifts at estimated depths between 6 and 8 km from the surface (consistent with geological, petrological and geochemical models) appear to be the major reservoirs for Deccan flood basalt volcanism at approximately 65 Ma.  相似文献   

5.
Strike-slip faulting in the Builth Ordovician Inlier is demonstrated by large-scale maps of the Llanelwedd Quarries near Builth Wells, and by fault plane and slickenline data. In the main quarry steep NNW-striking strike-slip faults dominate the structure, together with significant strike-slip displacement on the W-dipping bedding surfaces and bedding-parallel faults. A zone of steep N-striking extensional dip-slip faults links two of the strike-slip strands and there is a weaker E-striking set of strike-slip faults. When the four fault sets are rotated so that the regional bedding is horizontal, three become vertical and one horizontal, probably their attitude during active life in late Ordovician to early Silurian time. They formed a linked fault system capable of accommodating three-dimensional bulk strain. The fault flats have the same kinematic role in a strike-slip system as lateral ramps or transfer faults in dip-slip systems.In the nearby Gelli Cadwgan quarry strike-slip faults are again dominant but strike E or ESE. This heterogeneity of fault pattern in the southern Builth Inlier resolves into more homogeneous domains with areas of 0.1 to 0.5 km2 separated by E to NE-striking dextral strike-slip faults: Domainal structure, an important general feature of strike-slip tectonics, may be present on a variety of scales.  相似文献   

6.
The Kalpatta granite, of Pan-African age occurs in the southern granulite terrain of Peninsular India. Bouguer anomaly map of the Kalpatta and adjoining areas reveals a gravity low of 8–10 mGal centered over the Kalpatta granite and a minor low of 4–6 mGal over the adjacent Ambalavayal granite pluton. The residual anomaly map prepared for the Kalpatta granite has been utilized to obtain depth extent and 3-D geometry of the pluton. The analysis suggests that the Kalpatta granite is an elliptical and somewhat pear shaped body with horizontal dimensions of 6–11 km and extending to a depth of 6.5km, has steeply inward dipping contacts and the shape seen on the surface continues throughout its depth. The smooth oval shape could indicate low ductility contrast, deeper level of emplacement and permissive nature of the pluton. The 3-D depth model indicates an oblique section with much deeper levels exposed in the south, in other words, the crustal block encompassing the pluton has suffered a NNW tilt during uplift after the emplacement. It is further inferred that there was no post intrusive shape modification, the NW tilting of the region and denudation gave rise to the present outcrop pattern of the body.  相似文献   

7.
Gravity data from Assam compiled on Bouguer, Hayford and Airy isostatic anomaly maps have been interpreted in terms of tectonics of the area. The gravity anomalies suggest that the Dauki fault is very deep-seated. A gravity high of about 60 mGal near Haflong is interpreted as being the expression of an intrusive body with a density contrast of about + 0.15 g/cm3 with respect to the surroundings. From isostatic considerations, approximate crustal thicknesses over the Shillong Plateau, the Upper Assam valley and the Surma valley are estimated to be 40, 29 and 22 km respectively, suggesting a sharp change in crustal thickness from the Shillong Plateau to the Surma valley across the Dauki fault.  相似文献   

8.
钟云川  蒋丛林 《云南地质》2009,28(2):185-190
潞西地区航磁有三个异常带:第一异常带为同源重磁异常,反映高密度磁源体,由基性~超基性岩引起;第二异常带区域不同源重磁异常,反映低密度磁源体为混合片麻岩、混合岩等低密度地层,局部可能反映团坡厂和轩岗乡与黄铁矿相类似的矿床(点);第三异常带,重磁异常也不同源,反映寒武系一第四系的新地层,局部与花岗岩接触带及与断裂破碎有关的矽卡岩型铅锌多金属矿。依据区内航磁异常及地球物理特征,提出在潞西地区的找矿思路和方向。  相似文献   

9.
山东玲珑花岗质杂岩体三维形态的重力模拟   总被引:1,自引:0,他引:1  
根据胶东地区西北部的重力资料,并在地质资料的约束下,采用人-机联作用的和二维模拟方法,对玲珑花岗质杂岩体三维形态进行了细致的推断,布格重科与地质图的对比表明,本区的局部重力由玲珑花岗质岩体引起的,根据花岗岩体的二维特征,在其露头范围内,垂直其走向,选择一些均匀分布的重力剖面,以花岗岩露头位置作为其形态的地面约束,采用 -机联作的二维重力模拟方法, 出了岩体的断面形态综合这 断面图,便可描述花岗体的  相似文献   

10.
A two‐dimensional thermorheological model of the Central Alps along a north–south transect is presented. Thermophysical and rheological parameters of the various lithological units are chosen from seismic and gravity information. The inferred temperature distribution matches surface heat flow and results in Moho temperatures between 500 and 800 °C. Both European and Adriatic lithospheres have a ‘jelly‐sandwich’ structure, with a 15–20 km thick brittle upper crust overlying a ductile lower crust and a mantle lid whose uppermost part is brittle. The total strength of the lithosphere is of the order of 0.5–1.0 × 1013 N m−1 if the upper mantle is dry, or slightly less if the upper mantle is wet. In both cases, the higher values correspond to the Adriatic indenter.  相似文献   

11.
Long wavelength gravity anomalies over India were obtained from terrestrial gravity data through two independent methods: (i) wavelength filtering and (ii) removing crustal effects. The gravity fields due to the lithospheric mantle obtained from two methods were quite comparable. The long wavelength gravity anomalies were interpreted in terms of variations in the depth of the lithosphere–asthenosphere boundary (LAB) and the Moho with appropriate densities, that are constrained from seismic results at certain points. Modeling of the long wavelength gravity anomaly along a N–S profile (77°E) suggest that the thickness of the lithosphere for a density contrast of 0.05 g/cm3 with the asthenosphere is maximum of ∼190 km along the Himalayan front that reduces to ∼155 km under the southern part of the Ganga and the Vindhyan basins increasing to ∼175 km south of the Satpura Mobile belt, reducing to ∼155–140 km under the Eastern Dharwar craton (EDC) and from there consistently decreasing south wards to ∼120 km under the southernmost part of India, known as Southern Granulite Terrain (SGT).The crustal model clearly shows three distinct terrains of different bulk densities, and thicknesses, north of the SMB under the Ganga and the Vindhyan basins, and south of it the Eastern Dharwar Craton (EDC) and the Southern Granulite Terrain (SGT) of bulk densities 2.87, 2.90 and 2.96 g/cm3, respectively. It is confirmed from the exposed rock types as the SGT is composed of high bulk density lower crustal rocks and mafic/ultramafic intrusives while the EDC represent typical granite/gneisses rocks and the basement under the Vindhyan and Ganga basins towards the north are composed of Bundelkhand granite massif of the lower density. The crustal thickness along this profile varies from ∼37–38 km under the EDC, increasing to ∼40–45 km under the SGT and ∼40–42 km under the northern part of the Ganga basin with a bulge up to ∼36 km under its southern part. Reduced lithospheric and crustal thicknesses under the Vindhyan and the Ganga basins are attributed to the lithospheric flexure of the Indian plate due to Himalaya. Crustal bulge due to lithospheric flexure is well reflected in isostatic Moho based on flexural model of average effective elastic thickness of ∼40 km. Lithospheric flexure causes high heat flow that is aided by large crustal scale fault system of mobile belts and their extensions northwards in this section, which may be responsible for lower crustal bulk density in the northern part. A low density and high thermal regime in north India north of the SMB compared to south India, however does not conform to the high S-wave velocity in the northern part and thus it is attributed to changes in composition between the northern and the southern parts indicating a reworked lithosphere. Some of the long wavelength gravity anomalies along the east and the west coasts of India are attributed to the intrusives that caused the breakup of India from Antarctica, and Africa, Madagascar and Seychelles along the east and the west coasts of India, respectively.  相似文献   

12.
The Jiza' basin is located in the eastern part of Yemen, trending generally in the E–W direction. It is filled with Middle Jurassic to recent sediments, which increase in thickness approximately from 3,000 m to more than 9,000 m. In this study, block-35 of this sedimentary basin is selected to detect the major subsurface geological and structural features characterizing this basin and controlling its hydrocarbon potentials. To achieve these goals, the available detailed gravity and magnetic data, scale 1:100,000, were intensively subjected to different kinds of processing and interpretation steps. Also, the available seismic reflection sections and deep wells data were used to confirm the interpretation. The results indicated three average depth levels; 12.5, 2.4, and 0.65 km for the deep, intermediate, and shallow gravity sources and 5.1 and 0.65 km for the deep and shallow magnetic sources. Accordingly, the residual and regional anomaly maps were constructed. These maps revealed a number of high and low structures (horsts and grabens and half grabens), ranging in depth from 0.5 km to less than 4.5 km and trending mainly in the ENE, NW, and NE directions. However, the analytical signal for both gravity and magnetic data also showed locations, dimensions, and approximate depths of the shallow and near surface anomaly sources. The interpretation of the gravity and magnetic anomalies in the area indicated that the NW, NNW, ENE, and NE trends characterize the shallow to deep gravity anomaly sources; however, the NE, NW, and NNE trends characterize the magnetic anomaly sources, mainly the basement. Two-dimensional geologic models were also constructed for three long gravity anomaly profiles that confirmed and tied with the available deep wells data and previously interpreted seismic sections. These models show the basement surface and the overlying sedimentary section as well as the associated faults.  相似文献   

13.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   

14.
New gravity data along five profiles across the western side of the southern New England Fold Belt and the adjoining Gunnedah Basin show the Namoi Gravity High over the Tamworth Belt and the Meandarra Gravity Ridge over the Gunnedah Basin. Forward modelling of gravity anomalies, combined with previous geological mapping and a seismic-reflection transect acquired by Geoscience Australia, has led to iterative testing of models of the crustal structure of the southern New England Fold Belt, which indicates that the gravity anomalies can generally be explained using the densities of the presently exposed rock units. The Namoi Gravity High over the Tamworth Belt results from the high density of the rocks of this belt that reflects the mafic volcanic source of the older sedimentary rocks in the Tamworth Belt, the burial metamorphism of the pre-Permian units and the presence of some mafic volcanic units. Modelling shows that the Woolomin Association, present immediately east of the Peel Fault and constituting the most western part of the Tablelands Complex, also has a relatively high density of 2.72 – 2.75 t/m3, and this unit also contributes to the Namoi Gravity High. The Tamworth Belt can be modelled with a configuration where the Tablelands Complex has been thrust over the Tamworth Belt along the Peel Fault that dips steeply to the east. The Tamworth Belt is thrust westward over the Sydney – Gunnedah Basin for 15 – 30 km on the Mooki Fault, which has a shallow dip (~25°) to the east. The Meandarra Gravity Ridge in the Gunnedah Basin was modelled as a high-density volcanic rock unit with a density contrast of 0.25 t/m3 relative to the underlying rocks of the Lachlan Fold Belt. The modelled volcanic rock unit has a steep western margin, a gently tapering eastern margin and a thickness range of 4.5 – 6 km. These volcanic rocks are assumed to be Lower Permian and to be the western extension of the Permian Werrie Basalts that outcrop on the western edge of the Tamworth Belt and which have been argued to have formed in an extensional basin. Blind granitic plutons are inferred to occur near the Peel Fault along the central and the southern profiles.  相似文献   

15.
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-Sr I-type granite emplaced in the early stage (~160 Ma), I-type granite in the middle stage (~130 Ma) and anorogenic A-type granite in the late stage (~115 Ma).Geochemical characteristics of the high-Ba-Sr I-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New 40Ar/39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A-type granite, Taishanmiao pluton, was emplaced at ~115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between ~160 Ma and ~115 Ma. The genesis of the early- and middle-stage I-type granites could be linked to delamination of subducted lithosphere of the Qinling orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qinling -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial 87Sr/86Sr ratios,which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratons.  相似文献   

16.
《Tectonophysics》1987,142(1):15-26
The paleo-Oslo Rift/Oslo Graben system is geophysically characterized by a pronounced gravity high. A reinterpretation of gravity data in the region using a flexible inversion scheme indicates that the causative body has a density contrast of 0.06 g/cm−3. The inversion results also suggest that this body is most likely located in the upper part of the lower crust and extends eastward well outside the graben area proper. Estimates of crustal thicknesses before and after the rifting aborted, suggest that rifting commenced in the south and then progressed northwards. The corresponding pole of rotation was located approximately 240 km NNE of the city of Oslo. The hypocentres of 7 small local earthquakes were found to be located on the periphery of the anomalous body as derived from gravity modeling. Seismic investigations, including 3-D imaging using NORSAR data, have failed to provide conclusive evidence on intrusion of asthenospheric material in the lithosphere as part of the Oslo Graben taphrogenesis. The explanation proposed here is that the geophysical imprints of Oslo Rift/Oslo Graben evolutionary processes within the upper mantle have been considerably weakened over the associated time span of some 150–200 Ma. Finally, it is hypothesized that the asthenospheric injection into the lithosphere took place over a relatively small cross-sectional area of the Moho. The further ascent of the gabbroic magma was partly hindered by the relatively rigid upper crust, thus causing extensive lateral flow eastwards, outside the Oslo Graben proper, in the 10–20 km depth range.  相似文献   

17.
Spectral analysis of digital data of the Bouguer anomaly map of NW India suggests maximum depth of causative sources as 134 km that represents the regional field and coincides with the upwarped lithosphere — asthenosphere boundary as inferred from seismic tomography. This upwarping of the Indian plate in this section is related to the lithospheric flexure due to its down thrusting along the Himalayan front. The other causative layers are located at depths of 33, 17, and 6 km indicating depth to the sources along the Moho, lower crust and the basement under Ganga foredeep, the former two also appear to be upwarped as crustal bulge with respect to their depths in adjoining sections. The gravity and the geoid anomaly maps of the NW India provide two specific trends, NW-SE and NE-SW oriented highs due to the lithospheric flexure along the NW Himalayan fold belt in the north and the Western fold belt (Kirthar -Sulaiman ranges, Pakistan) and the Aravalli Delhi Fold Belt (ADFB) in the west, respectively. The lithospheric flexures also manifest them self as crustal bulge and shallow basement ridges such as Delhi — Lahore — Sagodha ridge and Jaisalmer — Ganganagar ridge. There are other NE-SW oriented gravity and geoid highs that may be related to thermal events such as plumes that affected this region. The ADFB and its margin faults extend through Ganga basin and intersect the NW Himalayan front in the Nahan salient and the Dehradun reentrant that are more seismogenic. Similarly, the extension of NE-SW oriented gravity highs associated with Jaisalmer — Ganganagar flexure and ridge towards the Himalayan front meets the gravity highs of the Kangra reentrant that is also seismogenic and experienced a 7.8 magnitude earthquake in 1905. Even parts of the lithospheric flexure and related basement ridge of Delhi — Lahore — Sargodha show more seismic activity in its western part and around Delhi as compared to other parts. The geoid highs over the Jaisalmer — Ganganagar ridge passes through Kachchh rift and connects it to plate boundaries towards the SW (Murray ridge) and NW (Kirthar range) that makes the Kachchh as a part of a diffused plate boundary, which, is one of the most seismogenic regions with large scale mafic intrusive that is supported from 3-D seismic tomography. The modeling of regional gravity field along a profile, Ganganagar — Chandigarh extended beyond the Main Central Thrust (MCT) constrained from the various seismic studies across different parts of the Himalaya suggests crustal thickening from 35-36 km under plains up to ~56 km under the MCT for a density of 3.1 g/cm3 and 3.25 g/cm3 of the lower most crust and the upper mantle, respectively. An upwarping of ~3 km in the Moho, crust and basement south of the Himalayan frontal thrusts is noticed due to the lithospheric flexure. High density for the lower most crust indicates partial eclogitization that releases copious fluid that may cause reduction of density in the upper mantle due to sepentinization (3.25 g/cm3). It has also been reported from some other sections of Himalaya. Modeling of the residual gravity and magnetic fields along the same profile suggest gravity highs and lows of NW India to be caused by basement ridges and depressions, respectively. Basement also shows high susceptibility indicating their association with mafic rocks. High density and high magnetization rocks in the basement north of Chandigarh may represent part of the ADFB extending to the Himalayan front primarily in the Nahan salient. The Nahan salient shows a basement uplift of ~ 2 km that appears to have diverted courses of major rivers on either sides of it. The shallow crustal model has also delineated major Himalayan thrusts that merge subsurface into the Main Himalayan Thrust (MHT), which, is a decollment plane.  相似文献   

18.
A new micro-fluidic method, which is known as the Micro-Reactor Simulated-Channel (MRSC) method, has been employed to rapidly determine the effective diffusion coefficients of lithium in three important representative low permeability lithologies including: Melechov granite (Czech Republic), Borrowdale tuff, and Land's End Cornish granite (both UK). The concept of MRSC is similar to the micro chemical reactor which enables fast measurements to be done on a small intact sample. The effective diffusion coefficients were measured and comparisons between the MRSC results and conventional column methods showed excellent agreement. Our measured effective diffusion coefficient for Melechov granite is 1.7 × 10−12 m2/s, directly comparable to previous conventional measurements. However the measurement time of the MRSC method is at least one order of magnitude faster than the conventional method and only requires small reaction volumes (as small as 10 ml). In addition, by exploiting the advantages of the MRSC method, the effects of velocity and concentration on diffusive transport for the two different UK rock types have also been investigated. Depending on flow rate and inlet tracer concentration, the effective diffusion coefficient for lithium in the Cornish granite ranges between 0.9 and 1.5 × 10−11 m2/s while that measured for the Borrowdale tuff varies between 1.2 and 1.6 × 10−11 m2/s.  相似文献   

19.
Magnesium Isotope Compositions of Natural Reference Materials   总被引:1,自引:0,他引:1  
This study presents a chemical protocol for the separation of Mg that is particularly adapted to alkali‐rich samples (granite, soil, plants). This protocol was based on a combination of two pre‐existing methods: transition metals were first removed from the sample using an AG‐MP1 anion‐exchange resin, followed by the separation of alkalis (Na, K) and bivalent cations (Ca2+, Mn2+ and Sr2+) using a AG50W‐X12 cation‐exchange resin. This procedure allowed Mg recovery of ~ 10 0 ± 8%. The [Σcations]/[Mg] molar ratios in all of the final Mg fractions were lower than 0.05. The Mg isotope ratios of eleven reference materials were analysed using two different MC‐ICP‐MS instruments (Isoprobe and Nu Plasma). The long‐term reproducibility, assessed by repeated measurements of Mg standard solutions and natural reference materials, was 0.14‰. The basalt (BE‐N), limestone (Cal‐S) and seawater (BCR‐403) reference materials analysed in this study yielded δ26Mg mean values of ?0.28 ± 0.08‰, ?4.37 ± 0.11‰ and ?0.89 ± 0.10‰ respectively, in agreement with published data. The two continental rocks analysed, diorite (DR‐N) and granite (GA), yielded δ26Mg mean values of ?0.50 ± 0.08‰ and ?0.75 ± 0.14‰, respectively. The weathering products, soil (TILL‐1) and river water (NIST SRM 1640), gave δ26Mg values of ?0.40 ± 0.07‰ and ?1.27 ± 0.14‰, respectively. We also present, for the first time, the Mg isotope composition of bulk plant and organic matter. Rye flour (BCR‐381), sea lettuce (Ulva lactuva) (BCR‐279), natural hairgrass (Deschampsia flexuosa) and lichen (BCR‐482) reference materials gave δ26Mg values of ?1.10 ± 0.14‰, ?0.90 ± 0.19‰, ?0.50 ± 0.22‰ and ?1.15 ± 0.27‰ respectively. Plant δ26Mg values fell within the range defined by published data for chlorophylls.  相似文献   

20.
The development of shear zones at mid‐crustal levels in the Proterozoic Willyama Supergroup was synchronous with widespread fluid flow resulting in albitization and calcsilicate alteration. Monazite dating of shear zone fabrics reveal that they formed at 1582 ± 22 Ma, at the end of the Olarian D3 deformational event and immediately prior to the emplacement of regional S‐type granites. Two stages of fluid flow are identified in the area: first an albitizing event which involved the addition of Na and loss of Si, K and Fe; and a second phase of calcsilicate alteration with additions of Ca, Fe, Mg and Si and removal of Na. Fluid fluxes calculated for albitization and calcsilicate alteration were 5.56 × 109 to 1.02 × 1010 mol m?2 and 2.57 × 108–5.20 × 109 mol m?2 respectively. These fluxes are consistent with estimates for fluid flow through mid‐crustal shear zones in other terranes. The fluids associated with shearing and alteration are calculated to have δ18O and δD values ranging between +8 and +11‰, and ?33 and ?42‰, respectively, and ?Nd values between ?2.24 and ?8.11. Our results indicate that fluids were derived from metamorphic dehydration of the Willyama Supergroup metasediments. Fluid generation occurred during prograde metamorphism of deeper crustal rocks at or near peak pressure conditions. Shear zones acted as conduits for major crustal fluid flow to shallow levels where peak metamorphic conditions had been attained earlier leading to the apparent ‘retrograde’ fluid‐flow event. Thus, the peak metamorphism conditions at upper and lower crustal levels were achieved at differing times, prior to regional granite formation, during the same orogenic cycle leading to the formation of retrograde mineral assemblages during shearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号