首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of detailed surficial geologic mapping for a 10 km2 area of alluvial (quebrada) deposits located in the middle Moche Valley of Peru, where archaeological features and deposits provide cross‐cutting relationships and numerical age control for late Holocene erosion and deposition associated with El Niño. Despite surfaces containing clasts that are heavily pitted and cracked due to salt weathering, archaeological and 14C dates indicate that most quebrada landforms in the study area are late Holocene in age and may reflect enhanced alluviation associated with increased El Niño activity beginning ca. 6000 cal yr B.P. Our study provides criteria for correlative dating of other Holocene landforms in the Moche Valley area but urges caution in long‐distance (>100 km) correlation because of geographic variability in surface weathering. Surficial geologic mapping aided by archaeological age control allows improved understanding of the rates of landscape change important to the development of complex irrigation‐based societies in the Peruvian Desert. © 2003 Wiley Periodicals, Inc.  相似文献   

2.
The upper portion of the Pedra Pintada Alloformation includes about 100 m of mostly eolian deposits. This paper emphasizes the vertical succession and lateral association of sedimentary facies, based on analysis of outcrop data and aerial photographs, as well as the hierarchy and origin of bounding surfaces. It aims to propose a high-resolution stratigraphic and depositional model that may be useful to exploitation of eolian reservoirs. The succession has been preserved due to basin subsidence, and is described in terms of four facies associations that constitute three dominantly eolian units. These units are sharply bounded by major flooding surfaces (super surfaces) that, in turn, are overlain by 1 to 2 m thick, dominantly water-laid facies (lacustrine, fluvial, deltaic and eolian). Both their internal organization and boundaries were controlled by changes in the base level rise rate. The basal Eolian Unit is composed of crescentic eolian dunes and damp interdune deposits ascribed to a wet eolian system. On the other hand, eolian units II and III, also characterized by crescentic eolian dunes (simple and compound) deposits, were related to dry eolian systems, since they comprise dry (eventually wet) interdune facies. Eolian Unit III is truncated by basinwide unconformity, which is then overlain by the ephemeral fluvial deposits (Varzinha Alloformation). This second type of super surface is related to climate-induced wind erosion (deflation) down to the water table level (regional Stokes surface) followed by fluvial incision linked to tectonic activity.  相似文献   

3.
Lower slopes of the Sandia Mountains are characterized by granitic corestone topography and weathering-limited slopes with thin grusy colluvium and weakly developed soils. In contrast, thick soils with illuvial clay and pedogenic carbonate have developed below aplite outcrops. Aplite is resistant to chemical decomposition, but physically weathers to blocky clasts that enhance surface roughness and erosional resistance of colluvium, promoting accumulation of eolian fines. Thick B horizons on aplite slopes indicate limited erosion and prolonged periods of stability and soil development. Accretion of eolian material limits runoff and prevents attainment of a steady-state balance between soil production and downslope transport.  相似文献   

4.
Many bedrock-confined fjord valleys along the Norwegian coast contain thick accumulations of fine-grained sediments that were deposited during and after the last deglaciation. The deposits gradually emerged above sea level due to glacioisostatic uplift, and fjord marine sedimentation was gradually followed by shallow marine and fluvial processes. During emergence terraces and river-cut slopes were formed in the valleys. Subsequent leaching of salt ions from the pore water in the marine deposits by groundwater has led to the development of quick clay. The deposits are subject to river erosion and destructive landslides involving quick clay. Most slides are of prehistoric age. Others are known from modern observations as well as from historic records.Landforms such as distinct slide scars or the hummocky terrain of slide deposits may be strongly modified by secondary processes. In addition, deposits from the most liquid part of quick clay slides may have planar surfaces. Clay-slide deposits on a fluvial or deltaic terrace, therefore, are not always easily recognized from morphology, and only exposures may reveal their internal structures and allow them to be distinguished from overbank flood sediments. Detailed sedimentological work shows that slide deposits in such setting consist of distinct facies containing reworked marine sediments. We propose three facies successions of clay-slide deposits that form a continuum. The dominant components of these succession types are: slightly deformed blocks of laminated clay and silt (A), highly deformed clay and silt with gravel clasts (B) and massive to stratified clay and silt with scattered clasts (C). We suggest that in many cases a basal muddy diamicton is a characteristic, and possibly diagnostic feature. Processes and depositional models are interpreted from the different succession types. The results may be relevant for identifying clay-slide deposits elsewhere and may be useful during general mapping of fjord marine deposits and characterization of slide-prone areas as well as during identification of prehistoric slides.  相似文献   

5.
In temperate regions, eolian deposits of different natures are often pedogenically-altered and mixed with underlying sediments. The research reported in this paper identifies for the first time the presence of eolian deposits in soils of central Tuscany and investigates the characteristics and origin. Five relict, polycyclic paleosol profiles were studied. P1 was situated in a natural dust trap, a doline on top of an isolated limestone hill; P2 and P3 were both situated on a limestone plateau, and P4 and P5 on a mid- and foot slope on schist. The profiles were sampled for routine analyses, iron forms, heavy minerals, major and trace elements, and pollen, spores and non-pollen palynomorphs. Undisturbed samples were taken for micromorphological and SEM analyses. Nine soil horizons were sampled for OSL dating. Eolian deposits were dominant or abundant in the first layers of P1, P2 and P3. OSL age determinations of soil horizons deriving from eolian parent material were middle Holocene. Chemical and heavy mineral analyses indicated different possible sources, including bare slopes, alluvial fans and wide channels, coming from the nearby streams that drain the Middle Tuscany ridge and the Mounts of Chianti; marginal contribution of volcanic ashes was only found in P1.The research demonstrated that wind soil erosion accompanied water erosion and colluvial deposition during the middle Holocene in the Elsa River basin. Pollen spectra, in particular, indicated that soil degradation occurred in an environment showing signs of incipient desertification, resulting from an increase of aridity in a land already strongly influenced by humans. Although central Italy is currently considered to be only marginally affected by wind soil erosion, a climate change, which would imply increased arid conditions, could trigger a new cycle of slope denudation, wind erosion and loess deposition.  相似文献   

6.
A detailed study of the Duvanny Yar section in the Kolyma Lowland (Yakutia) provides the most extensive knowledge to date about late-Pleistocene soil formation processes and environments in the North–East Siberian Arctic. Late-Quaternary palaeoenvironmental changes were reconstructed using paleopedological data and a range of palaeoecological bio-indicators (palynomorphs, plant macrofossils and insects). The frozen sediments representing marine isotope stage 3 (MIS-3), which encompasses the Karginsky interstadial, include profiles of four palaeosols of different ages. The oldest palaeosol is early Karginskian, and three overlying soil horizons represent a late-Karginskian pedocomplex. Palaeopedological data indicate a change of from synlithogenic soil formation processes to epigenic ones during these intervals. The intervening periods of synlithogenic pedogenesis were accompanied by active accumulation of eolian deposits. The Earlier Karginskian period of pedogenesis occurred in the absence of eolian sedimentation and when summer conditions were warm. The wide spectrum of peaty and peaty-gley soils observed in the late-Karginskian deposits developed under conditions of progressive cooling. The structure and content of fossil rodent burrows dated to approximately 30 000 yr BP from frozen late-Pleistocene deposits at Duvanny Yar indicate an arid and severe climate, a depth of active layer of 60–80 cm, and a wide distribution of disturbed habitats with pioneer and steppe vegetation.  相似文献   

7.
A soil survey around the archaeological site of Harappa, Pakistan revealed alluvial deposits of five distinct ages based on relative position in the landscape and degree of soil profile development. the youngest deposit (age 1) is in the lowest landscape position and has received flood waters as recently as 1988. Soils there are in an incipient stage of development: only organic carbon and soluble salts have accumulated at the surface of the profile. the age 2 deposit has not undergone significant pedogenic change, but is in a slightly higher landscape position than the youngest deposit. Elevated concentrations of P, and the presence of sand-sized pottery and brick fragments, indicate that this deposit was derived at least partially from archaeological material. the presence of small, soft calcite nodules (Stage II) and some soluble salt translocation are the primary pedogenic changes observed in the age 3 deposit. the age 4 deposit shows evidence of both carbonate and gypsum accumulation. Presence of large gypsum nodules in deep By horizons suggests that a high groundwater table has altered these soils. the oldest deposit, age 5, forms a late Pleistocene stream terrace of the Ravi River. the soil formed in this deposit exhibits considerable carbonate accumulation, with large, dense nodules (Stage II + ) and an argillic horizon. A 14C date from pedogenic calcite gives an age of 7080 ± 90 years B.P., indicating a minimum age of early Holocene. the soil survey suggests that the ancient city of Harappa was built on an age 5 stream terrace remnant, surrounded by Holocene floodplains and a meandering channel of the Ravi River.  相似文献   

8.
Wind erosion is a major problem for modern farmers, a key variable affecting nutrient levels in ecosystems, and a potentially major force impacting archaeological site formation; however, it has received scant consideration in geoarchaeological studies of agricultural development compared with more easily quantifiable environmental costs, such as vegetation change or fluvial erosion. In this study, soil nutrient analysis is used in the Kalaupapa field system, Moloka'i Island, Hawai'i, to detect an increase in wind erosion attributable to intensive agriculture following the burning of endemic forest. This practice began on a small scale in the 13th century A.D., expanded around cal A.D. 1450–1550, and continued until the near total abandonment of the fields after European contact in the 18th century. Nutrients that naturally occur in high amounts in coastal windward areas due to the long‐term, cumulative effect of sea spray were especially impacted. However, thanks to the unique landform of the Kalaupapa Peninsula, nutrient depletion in windward areas was offset by downwind enrichment and likely contributed to the long‐term sustainability of the system as a whole. Future research on tropical and arid agriculture should consider the cumulative environmental cost of increased eolian erosion attributable to anthropogenic landscape modification. © 2007 Wiley Periodicals, Inc.  相似文献   

9.
This study was taken up to investigate the effects of landscape patterns on the soil erosion processes in a mountain–basin watershed. The revised universal soil loss equation and sediment delivery distribution models were used to estimate the soil erosion processes. The landscape patterns include the landscape metrics at the landscape level, landscape composition and configuration indicators on the basis of source–sink landscape theory. In the study area, the grassland, bare land, farmland and construction land were the sediment-source landscape; the forest and shrub were the sediment-sink landscape. The correlation analysis results showed that the soil erosion processes were significantly associated with the landscape patterns of the study area. At the landscape level, fragmentation metric was positively correlated with soil erosion; diversity metric was negatively related to soil erosion and sediment yield at the sub-basin scale. Among the source–sink landscape composition and configuration indicators, the composition indicator was positively correlated with soil erosion rate and sediment yield. In the configuration landscape indices, the shape index was negatively correlated with soil erosion rate and sediment yield; the fragmentation index was positively correlated with soil erosion rate and negatively correlated with sediment delivery rate. These results indicated that the optimization measures, such as increase in the area, connectivity and regularity of sediment-sink landscape, or decrease in the proportion, connectivity and regularity of sediment-source landscape, were favorable for soil conservation. Furthermore, the landscape indicators based on the source–sink theory could provide more information for landscape pattern optimization to reduce soil erosion.  相似文献   

10.
The Cainozoic history of the Lake Eyre region opened with a period of deep weathering during which many of the older rocks were extensively kaolinized. Following erosion and later deposition of a thin sheet of Tertiary fluviatile deposits, a period of weathering resulted in the widespread formation of silcrete. Another period of erosion and deposition was followed by soil formation and minor silici‐fication.

An important period of erosion followed during which some of the main elements of the present landscape were outlined. Warping during this interval gave rise to shallow basins in which lacustrine sediments accumulated. At about the same time, a system of mound springs developed near the western margin of the Great Artesian Basin. Another major period of erosion followed, by which time the main topographic features of the present landscape had evolved. This last event probably took place near the close of the Tertiary. Throughout the Tertiary, drainage was external and ancestral Lake Eyre remained fresh.

The Quaternary was characterized by four periods of aeolian and, to a lesser extent, water erosion and deposition alternating with periods of landscape stability, when weathering and soil formation took place.

Throughout the Cainozoic there was an alternation of relatively humid and dry periods, but true aridity and internal drainage did not appear until the Quaternary. Sand ridges were not formed until the late Quaternary. Intervals of gentle warping occurred from time to time during the Tertiary, but the Quaternary has for the most part been a period of stability. These events have given rise to a sequence of distinctive rock and soil‐stratigraphic units whose characteristics are considered in some detail.  相似文献   

11.
At The Rustad Quarry Site (32RI775), in southeastern North Dakota, Early Archaic artifacts, bison bone, and hearth features were found in the lowest of three Boroll-like buried soils formed in alluvial fan sediments. Alluvial fan sediments were deposited from 8000 to 4925 B.P., and were then buried by eolian sand. The alluvial fan sediments (mudflows) bury lacustrine sediments (Sherack Formation deposited from 9900 to 9500 B.P. in Glacial Lake Agassiz II), both of which overlie a Moorhead Phase fluvial terrace deposited from 10,900 to 9,900 B.P. Cultural remains were associated with five radiocarbon ages, three on archaeological charcoal (7180 B.P., 7240 B.P., and 7550 B.P.) and two on organic carbon from two welded A-horizons containing the cultural remains (7370 B.P. and 7675 B.P.). A well-developed Aquoll-like soil formed in the lacustrine sediments from 9500 to 8000 B.P. Soil morphology and chemistry of the Boroll-like fan soils, the Aquoll-like lacustrine soil, and other Boroll-like soils formed in eolian and deltaic sediments nearby suggest a subhumid, cool continental climate with riparian woodland and mixed prairie vegetation at the site and surrounding area from 11,400 B.P. to the present. This partially contradicts paleoenvironmental reconstruction from pollen sites nearby that suggest the area was covered by a closed canopy spruce forest from terminal late-Pleistocene to 10,000 B.P. Alluvial fan formation and eolian activity on the adjacent Sheyenne Delta occurred from 8000 to 5000 B.P., which indicates greater landscape instability and drier conditions during the mid-Holocene (Altithermal).  相似文献   

12.
Geoarchaeological investigations in an area surrounding the confluence of the upper Colorado and Concho Rivers, Edwards Plateau of West Texas, have produced a detailed landscape evolution model which provides a framework for discussion of the influences of geomorphic processes on the development, preservation, and visibility of the archaeological record. Field mapping within the study area has differentiated six allostrati-graphic units of fluvial origin in both valleys, as well as extensive eolian sand sheets along the Colorado River. Early to middle Pleistocene terrace remnants cap many upland areas, whereas two distinct late Pleistocene terrace surfaces are widespread within the study area at somewhat lower elevations. Fluvial activity during the time period of human occupation is represented by an extensive Holocene terrace and underlying valley fill, which is up to 11 m in thickness. Valley fill sediments can be subdivided into allostratigraphic units of early to middle Holocene (ca. 10,000–5000 yr B.P.) and late Holocene age (ca. 4600–1000 yr B.P.), which are separated by a buried soil profile. The modern incised channels and very narrow floodplains represent the last millennium. Eolian sand sheets of early to middle Holocene age overlie limestone- and shale-dominated uplands, Pleistocene terraces, and in some cases the Holocene valley fill along the Colorado River. Pleistocene terraces have been stable features in the landscape and available for settlement through the time period of human occupation. Archaeological materials of all ages occur at the surface, and the record preserved in individual sites range from that associated with discrete periods of activity to longer-term palimpsests that represent repeated use over millennia. Sites within early to middle Holocene and late Holocene fills represent short-term utilization of constructional floodplains during the Paleoindian through early Archaic and middle to late Archaic time periods respectively. By contrast, those that occur along the buried soil profile developed in the early to middle Holocene fill record middle to late Archaic cultural activity on stable terrace surfaces, and represent relatively discrete periods of activity to longer-term palimpsests that represent repeated use over the 3000–4000 years of subaerial exposure. Late Prehistoric sites occur as palimpsests on soils developed in late Holocene alluvium or stratified within modern floodplain facies. Paleoindian through Late Prehistoric sites occur stratified within eolian sand sheets or along the unconformity with subjacent fluvial deposits. The landscape evolution model from the upper Colorado and Concho Rivers is similar to that developed for other major valley axes of the Edwards Plateau. This model may be regionally applicable, and can be used to interpret the geomorphic setting and natural formation processes for already known sites, as well as provide an organizational framework for systematic surface and subsurface survey for new archaeological records. 0 1992 John Wiley & Sons, Inc.  相似文献   

13.
The well known Clovis and Plainview archaeological sites of New Mexico and Texas have yielded new data on regional late Quaternary geologic, paleoclimatic, and pedologic histories. Eolian sedimentation at the Clovis site from about 10,000 to less than 8500 yr B.P. was followed by the formation of a cumulic soil between 8500 and 5000 yr B.P. Episodic eolian and slope wash deposition then culminated in massive eolian sedimentation about 5000 yr B.P. after which a Haplustalf formed then was subsequently buried by part of a dune system within the last 1000 yr. At the Plainview site, a basal stream gravel contains Plainview cultural material (ca. 10,000 yr B.P.), which is followed by a localized early Holocene lacustrine deposit, two eolian deposits (the younger dating to about 5000 yr B.P.), and a marsh deposit which slowly accreted as an Argiustoll formed in the younger eolian unit. The data indicate that on the Southern High Plains (1) between 12,000 and 8500 yr B.P. sedimentation varied from site to site, (2) there was a regional climate change toward warming and drying in the early Holocene, (3) two episodes of severe drought apparently occurred in the middle Holocene (6500 to 4500 yr B.P.), (4) between 4500 yr B.P. and the present an essentially modern climate existed, but with several shifts toward aridity within the last 1000 yr, (5) argillic horizons have developed in late Holocene soils, (6) clay illuviation can occur in calcareous soils, and (7) long-distance correlation of Holocene stratigraphy in the region is possible, particularly with the aid of soil morphology.  相似文献   

14.
Fluvial and eolian successions of oxygen isotope stage 3 are compared with global (GCM) and regional climate (RCM) modeling experiments of the stage 3 and last glacial maximum climate in Europe. Differences in precipitation between stage-3 stades and interstades were minor, which is confirmed by the fluvial successions. The fluvial response to climate variation is non-uniform, and in southern Europe more pronounced than in northern Europe. The model simulations indicate a strong western winter circulation over Europe during stage 3, which is supported by the eolian deposits data. Wind speeds in the last glacial maximum simulation appear modest compared with those of stage 3, which contrasts with the abundance of eolian deposits. This suggests that during glacial climates the stabilizing effect of vegetation determines eolian sedimentation rates, rather than wind speed. Stage 3 can be divided into an older part (>45,000 cal yr B.P.) with a relatively stable landscape and moist climate and a younger part with more frequent climate change and decreasing landscape stability.  相似文献   

15.
Soils and sediments of a terraced slope at an Early Bronze Age site on the Aegean island of Amorgos were examined micromorphologically to determine the nature and amount of erosion on the slope during the past 5000 years, and how this had affected the formation of the surviving archaeological record. The deposits forming representative terraces were examined, as was the postdepositional sequence overlying the site, and a palaeosol preserved beneath terrace retaining walls at the break of slope. The buried, preterrace system “red soil” was a reworked red palaeosol, much affected by downslope erosion processes, which probably commenced with clearance associated with the Early Bronze Age occupation of the site. Examination of this soil suggested that there were at least two premodern phases of use of the hillside. © 1999 John Wiley & Sons, Inc.  相似文献   

16.
风尘堆积常见的同沉积和沉积后改造特征及其环境意义   总被引:2,自引:2,他引:0  
黄土堆积作为气下沉积,任何一个深度都曾经暴露于地表,因而必然受到相关地表过程的作用.由于这些过程均发生于特定的环境条件下,形成的特征多数具有明确的环境意义;而黄土在沉积后也可能受到各种地质过程的改造,从而对研究中常用的气候代用指标有一定影响.文章基于野外、微形态等分析,结合前人成果,对我国北方新近纪风尘堆积中常见的同沉积和沉积后改造特征、形成过程及环境意义进行研究.由于一些特征在黄土堆积中具有普遍性,可作为识别风成堆积的标志和环境事件研究的指标,并有助于全面理解常用的替代指标的环境意义.  相似文献   

17.
Erosion and sediment redistribution are important processes in landscape changes in the short and long term. In this study, the RMMF model of soil erosion and the SEDD model of sediment delivery were used to estimate annual soil loss and sediment yield in an ungauged catchment of the Spanish Pre-Pyrenees and results were interpreted in the context of the geomorphic features. The Estaña Catchment is divided into 15 endorheic sub-catchments and there are 17 dolines. Gullies and slopes were the main erosive geomorphic elements, whereas the colluvial, alluvial, valley floor, and doline deposits were depositional elements. Spatially distributed maps of gross soil erosion, sediment delivery ratio (SDR), and sediment yield (SY) were generated in a GIS. Severe erosion rates (>100 Mg ha?1 year?1) were found in gullies, whereas mean and maximum erosion rates were very high on slopes developed on Keüper Facies and high in soils on Muschelkalk Facies. Where crops are grown, the depositional-type geoforms were predicted by the models to have an erosive dynamic. Those results were consistent with the rates of erosion quantified by 137Cs which reflects the significant role of human activities in triggering soil erosion. Catchment area was positively correlated with erosion rate, but negatively correlated with SDR and SY. The latter were negatively correlated with the proportion of the surface catchment covered with forests and scrublands. The topography of the area influenced the high SDR and SY in the dolines and valley floors near the sinks. Intra-basin stored sediment was 59.2% of the total annual eroded soil in the catchment. The combination of the RMMF and SEDD models was an appropriate means of assessing the effects of land uses on soil erosion and obtaining a better understanding of the processes that underlie the geomorphic changes occurring in mountainous environments of the Mediterranean region.  相似文献   

18.
The Quaternary of the continental interior of the United States is characterized by deposits from glacial ice, with associated outwash and eolian deposits, and by alluvial deposits produced by the same climatic pulses. Erosional incision of valleys occurred early in the glacial pulse, outwash deposition during the waning phase of the pulse, and soil formation during times of relative stability between the glacial pulses. These features of deposition, erosion, and soil formation are presented in a series of curves. One way the marine record could be correlated with that of the continental interior is to compare and match the physical records of both environments.  相似文献   

19.
美国中西部第四纪冰川与黄土研究的进展和问题   总被引:1,自引:0,他引:1       下载免费PDF全文
冯兆东 《第四纪研究》1994,14(4):362-368
本文对美国中西部和中国黄土高原0.5Ma以来的气候序列进行了对比。0.5—0.1MaB.P.,美国中西部间冰期以干暖为特征,100000—35000aB.P.,气候从干暖向温湿转化。本次冰进阶段,冰盖达到最大后,风尘堆积占优势,气候湿凉为主。全新世先从温凉转为温湿,继而干暖,后又转向湿凉。总之,0.5Ma以来除末次冰期外,美国中西部与中国黄土高原温度变化的总趋势是一致的,但两地的湿度变化是相反的。  相似文献   

20.
《Quaternary Science Reviews》2007,26(17-18):2265-2280
Well-preserved loess deposits are found on the foothills of mountains along the middle reaches of the Yarlung Zangbo River in southern Tibet. Optically stimulated luminescence (OSL) dating is used to determine loess ages by applying the single-aliquot regeneration technique. Geochemical, mineralogical, and granulometric measurements were carried out to allow a comparison between loess from Tibet and the Chinese Loess Plateau. Our results demonstrate that (i) the loess deposits have a basal age of 13–11 ka, suggesting they accumulated after the last deglaciation, (ii) loess in southern Tibet has a “glacial” origin, resulting from eolian sorting of glaciofluvial outwash deposits from braided river channels or alluvial fans by local near-surface winds, and (iii) the present loess in the interior of Tibet has accumulated since the last deglaciation when increased monsoonal circulation provided an increased vegetation cover that was sufficient for trapping eolian silt. The lack of full-glacial loess is either due to minimal vegetation cover or possibly due to the erosion of loess as glaciofluvial outwash during the beginning of each interglacial. Such processes would have been repeated during each glacial–interglacial cycle of the Quaternary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号