首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Temporal variations in bedload transport rates that occur at a variety of timescales, even under steady flow conditions, are accepted as an inherent component of the bedload transport process. Rarely, however, has the cause of such variations been explained clearly. We consider three data sets, obtained from laboratory experiments, that refer to measurements of bedload transport made with continuously recording bedload traps. Each data set is characterized by a predominant low-frequency oscillation, on which additional higher-frequency oscillations generally are superimposed. The period of these oscillations, as isolated through the use of spectral analysts, ranged between 0·47 and 168 minutes, and was associated unequivocally with the migration of bedforms such as ripples, dunes, and bars. The extent to which such oscillatory behaviour may be recognized in a data set depends on the duration of sampling and the length of the sampling time, with respect to the period of a given bedform. Several theoretical probability distribution functions have been developed to describe the frequency distributions of (relative) bedload transport rates that are associated with the migration of bedforms (Einstein, 1937b; Hamamori, 1962; Carey and Hubbell, 1986). These distribution functions were derived without reference to a sampling interval. We present a modification of Hamamori's (1962) probability distribution function, generated by Monte Carlo simulation, which permits one to specify the sampling interval, in relation to the length of a bedform. Comparisons between the simulated and observed frequency distributions, that were undertaken on the basis of the data described herein, are good (significant at the 90 per cent confidence level). Finally, the implications that temporal variability, which is associated with the migration of bedforms, have for the accurate determination of bedload transport rates are considered.  相似文献   

3.
Accurate evaluation and prediction of bedload transport are crucial in studies of fluvial hydrodynamic characteristics and river morphology.This paper presents a one-dimensional numerical model based on the one-dimensional lateral distribution method(1 D-LDM) and six classic bedload transport formulae that can be used to simulate hydrodynamic characteristics and bedload transport discharge in cross sections.Two gravel-bed rivers,i.e.the Danube River located approximately 70 km downstream from Br...  相似文献   

4.
The grain-size distributions of bedload gravels in Oak Creek, Oregon, follow the ideal Rosin distribution at flow stages which exceed that necessary to initiate breakup of the pavement in the bed material. The distributions systematically vary with flow discharge and bed stress, such that at higher flow stages the grain sizes are coarser while the spread of the distribution decreases. A differential bedload transport function for individual grain-size fractions is formulated utilizing the dependence of the two parameters in the Rosin distribution on the flow stress. The total transport rate, which is also a function of the flow stress, is apportioned within the Rosin grain-size distribution to yield the fractional transport rates. The derived bedload function has the advantage of yielding smooth, continuous frequency distributions of transport rates for the grain-size fractions, in contrast to the discrete transport functions which predict rates for specified sieve fractions. Successful reproduction of the measured fractional transport rates and bedload grain-size distributions in Oak Creek by this approach demonstrates its potential for evaluations of transport rates of size fractions in gravel-bed streams. The approach will be useful in investigations of downstream changes in bed material grain-size distributions.  相似文献   

5.
Data from Turkey Brook are used to demonstrate that the interaction between gravel bedforms, flow resistance and bedload transport is a dynamic one, both between and within hydrographs. and that creation of a significant component of form drag through construction of microforms (pebble clusters) may precede the eventual break-up of the bed in a transport event. This process of drag augmentation', which can be seen as a feedback mechanism delaying transport and can be likened to dilation of a soil tested in a direct shear apparatus, itself appears to be dependent on the characteristics of turbulence, and therefore involves feedback at a finer resolution than envisaged by Hassan and Reid (1990).  相似文献   

6.
The behaviour and form of, and bedload sediment transport through, a 3.5 m wide forest stream have been monitored for nearly three years. Bedload transport is highly episodic and spatially variable, and is controlled less by water discharge than by sediment availability. Organic debris in the channel creates temporary base levels and sites at which coarse sediment may remain stored for long periods; collapse or disruption of log and debris jams makes sediment available for transport in only a small proportion of the runoff events that are actually competent to move the material. Even then, sediment travels only a short distance before being redeposited, frequently behind debris accumulations further downstream. Rates of sediment transport during a given runoff event can vary markedly over short distances along the stream, again depending on whether sediment was made available for transport by log jam collapse upstream. Organic debris is therefore a major constraint on the application of physical laws and theories to explaining sediment movement in, and the morphology of, this stream.  相似文献   

7.
Automatic and continuously recording samplers are deployed in a Hertfordshire gravel-bed stream to show that bedload transport is related to stream power. The pattern is similar to that already established for North American channels but, because the record is so detailed, it is possible to identify the cause of the considerable scatter that is normal in such relationships. A major factor is the occurrence of rhythmic pulses in bedload discharge that are not matched by similar fluctuations in hydraulic variables. It is suggested that these pulses reflect downstream differences in the concentration of mobile particles in a slow-moving traction carpet, and that they may be likened to kinematic waves. The record also reveals that the threshold of sediment transport—always presumed hithero to be associated with incipient motion—is related to the cessation of bedload transport in a river flood. Indeed, the mean value of stream power at the finish of bedload transport is only 20 percent of that prevailing at the moment of incipient sediment motion. Because of this, there is an inevitably poor correlation between actual bedload transport rates and those predicted by bedload equations which rely upon a single traction threshold. These new data show that the general inverse relationship between bedload discharge and water-depth : grain-size ratio proposed by Bagnold (1977, 1980) is not universal. Transport efficiency for this gravel-bed stream is typically 0.05 per cent of available stream power, which compares with 1.6 per cent for a river moving both gravel and sand, and 5 per cent for another channel where bedload is composed predominantly of sand-sized particles. It is argued that coarse and fine-grained alluvial channels may need to be considered separately. By allowing for differences in traction threshold at the beginning and end of bedload events, and by averaging bedload discharge flood by flood in order to smooth out the effect of pulses, it is possible to achieve a reasonably good prediction of average bedload transport rate in terms of stream power.  相似文献   

8.
9.
This paper investigates variability in bedload transport and channel morphology for 11 replicate experimental runs in an approximately 1:50 braided river model. The experiments, each of 90 h duration, were carried out in a 20 × 3m tilting flume. All the experiments started with the same initial conditions. Bedload transport was measured at 5 min intervals in a collection drum at the exit from the flume. The model showed reasonable hydraulic similarity when compared to prototype rivers. Results show that mean bedload transport rates for the 11 runs vary in the range 0·98 to 1·49gs?1 (mean + 1·21, coefficient of variation 11 per cent). Within-run transport rates commonly vary from close to zero, to two and occasionally three or four times the mean rate. Within the bedload series, several irregular phases of transport intensity can be observed, but time series analysis of the data show little underlying serial structure (an AR(2) autoregressive model is appropriate). Channel patterns are narrow/braided, are established quickly and remain relatively stable throughout the runs, although channel widths increase between 20 and 103 per cent over the 11 runs. Channel behaviour varies from aggradational to transitional between aggradation and degradation. Time-averaged bedload transport rate is weakly correlated with braiding intensity. In general, these results demonstrate that for a given set of controlling variables, bedload transport and channel morphology can be approximately replicated.  相似文献   

10.
Developments in theoretical and empirical modelling of bedload transport processes are hindered by the lack of an adequate data base for testing or establishing the models. Conventional methods of measuring bedload transport rates fail to provide the necessary continuous or frequent record of variations at a single section. Acoustic techniques have the potential to overcome this deficiency, but their application has been very limited. Some of the problems of calibrating an acoustic device in the field and in a laboratory flume are discussed, and a possible circuit design described which might minimize calibration difficulties by automatically subtracting the noise generated by flow turbulence.  相似文献   

11.
Differences in the transport rate and size of bedload exist for varying levels of flow in coarse‐grained channels. For gravel‐bed rivers, at least two phases of bedload transport, with notably differing qualities, have been described in the literature. Phase I consists primarily of sand and small gravel moving at relatively low rates over a stable channel surface. Transport rates during Phase II are considerably greater than Phase I and more coarse grains are moved, including material from both the channel surface and subsurface. Transition from Phase I to Phase II indicates initiation and transport of grains comprising the coarse surface layer common in steep mountain channels. While the existence of different phases of transport is generally acknowledged, the threshold between them is often poorly defined. We present the results of the application of a piecewise regression analysis to data on bedload transport collected at 12 gravel‐bed channels in Colorado and Wyoming, USA. The piecewise regression recognizes the existence of different linear relationships over different ranges of discharge. The inflection, where the fitted functions intersect, is interpreted as the point of transition from Phase I to Phase II transport; this is termed breakpoint. A comparison of grain sizes moved during the two phases shows that coarse gravel is rarely trapped in the samplers during Phase I transport, indicating negligible movement of grains in this size range. Gravel larger than about D16 of the channel surface is more consistently trapped during Phase II transport. The persistence of coarse gravel in bedload samples provides good evidence that conditions suitable for coarse grain transport have been reached, even though the size of the sediment approaches the size limits of the sampler (76 mm in all cases). A relative breakpoint (Rbr) was defined by the ratio between the discharge at the breakpoint and the 1·5‐year flow (a surrogate for bankfull discharge) expressed as a percentage. The median value of Rbr was about 80 percent, suggesting that Phase II begins at about 80 percent of the bankfull discharge, though the observed values of Rbr ranged from about 60 to 100 percent. Variation in this value appears to be independent of drainage area, median grain size, sorting of bed materials, and channel gradient, at least for the range of parameters measured in 12 gravel‐bed channels. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

12.
Relative bedload transport rate and hydraulic parameters were measured on two occasions in a reach of the braided, gravel-bedded Ohau River. Each reach contained a deep, fast-flowing chute leading to an area of diverging, shallow flow which contained a middle bar. The measurements are self-consistent, and indicate that, where flow is concentrated in a deep chute, shear stress is high, but where flow diverges, depth, slope and shear stress decrease. In the first survey, the bed was scoured in the chute and sediment transport rates were high, but where flow diverged sediment transport rate decreased. It appears that deposition leads to bar growth, bar growth in turn reduces slope and depth, deposition is encouraged, and the bar continues to grow vertically, laterally and upstream. In the second survey no sediment transport was observed, despite hydraulic conditions very similar to the first survey. The absence of sediment transport is attributed to the cessation of sediment supply to the river channel.  相似文献   

13.
Coarse bed load was sampled in a gravel/cobble bed stream during two major floods in the snowmelt runoff season. The channel is characterized by high rates of bank erosion and, therefore, high rates of sediment supply and bed load flux. Peak discharge reached four times bank‐full, and bed load was sampled at flows 0·7–1·7 times bank‐full. A large aperture bed load sampler (1 m by 0·45 m) captured the largest particles in motion, and specifically targeted the coarse bed load size distribution by using a relatively large mesh (32 mm or D25 of streambed surface size distribution). Bed load flux was highly variable, with a peak value of 0·85 kg/s/m for the coarse fraction above 38 mm. Bed load size distribution and maximum particle size was related to flow strength. Entrainment was size selective for particles D70 and larger (88–155 mm), while particles in the range D30D70 (35–88 mm) ceased to move at essentially the same flow. Bed load flux was size selective in that coarse fractions of the streambed surface were under‐represented in or absent from the bed load. Painted tracer particles revealed that the streambed surface in the riffles could remain stable even during high rates of bed load transport. These observations suggest that a large proportion of bed load sediments was sourced from outside the riffles. Repeat surveys confirmed major scour and fill in pools (up to 0·75 m), and bank erosion (>2 m), which together contributed large volumes of sediment to the bed load. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Pebble clusters are reported widely as characteristic of gravel river beds and are known to influence the initial entrainment of bedload. A field assessment suggests that their distribution is not ubiquitous, favouring channel bars, but also reveals a tendency towards a preferred stream wise spacing. A series of laboratory flume experiments shows that flow resistance rises to, and falls from, a peak value as the longitudinal spacing of pebble clusters decreases, in a manner similar to that shown by others for strip roughness, isolated blocks, and simulated ripples and dunes. The experiments also reveal a strong inverse relationship between bedload flux rates and the flow resistance induced by the concentration of pebble clusters. It is concluded that pebble cluster spacing tends towards an equilibrium that is regulated by a feedback process involving sediment transport rates and that the spatial concentration of these microforms will adjust to the point where they induce maximum flow resistance.  相似文献   

15.
Discharge characteristics in six adjacent mountainous watersheds in northern New Mexico, U.S.A., vary substantially between basins underlain by different lithologies. Relatively resistant gneisses and granites underlie two basins (drainage areas: 43 and 94 km2) that have high unit discharge (0·010 to 0·14 m3s?1 km?2), high bankfull discharge, and sustained high discharge. Less resistant sandstones and shales underlie four basins (drainage areas: 96 to 215 km2) that have relatively low unit discharge (0·001 to 0·005 m3s?1 km?2), relatively low bankfull discharge, and peak discharges that are not sustained as long as those in the crystalline terrane. Analysis of snowmelt-runoff water budgets suggests that three factors control hydrologic conditions in the basins. First, area-elevation distributions appear to control the timing and amounts of water input. These distributions probably reflect the erosional resistance of the different lithologies. Second, lithology appears to control runoff production in areas having minor amounts of storage. Third, glacial deposits in headwater regions control discharge duration and timing via storage and return flow releases. The amount of return flow released by glacial deposits, however, is probably controlled by the permeability of underlying bedrock. Therefore it appears that the duration, timing, and magnitude of discharge events in the study area are controlled both directly and indirectly by lithology. Stream power and shear stress estimates derived from bankfull discharge and bed-material size data suggest that higher bedload transport rates and larger bedload particle sizes exist in streams draining crystalline rocks than in streams draining sedimentary terrane. It appears that source-area lithology, by controlling discharge production, also influences stream power, bedload transport capabilities, and therefore total amounts of bedload transport.  相似文献   

16.
17.
While clay and silt matrices of gravel‐bed rivers have received attention from ecologists concerned variously with the deteriorating environments of benthic and hyporheic organisms, their impact on sediment entrainment and transport has been explored less. A recent increase of such a matrix in the bed of Nahal Eshtemoa, an ephemeral river of the northern Negev, has more than doubled the boundary shear stress needed to initiate bedload, from 7 N m‐2* = 0.027) during the flash floods of 1991–2001 to 15 N m‐2* = 0.059) during those of 2008–2009. The relation between bedload flux and boundary shear stress continues to be well‐defined, but it is displaced. The matrix now contains a significant amount of silt and clay size material. The reasons for the increased entrainment threshold of bedload are explored. Large‐scale laser scanning of the dry bed reveals a reduction in grain‐scale morphological roughness, while artificial in situ tests of matrix integrity indicate considerable cohesion. The implications for adopting bed material sampling strategies that account for matrix development are assessed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A comprehensive monitoring programme focusing on bedload transport behaviour was conducted at a large gravel‐bed river. Innovative monitoring strategies were developed during five years of preconstruction observations accompanying a restoration project. A bedload basket sampler was used to perform 55 cross‐sectional measurements, which cover the entire water discharge spectrum from a 200‐year flood event in 2013 to a rare low flow event. The monitoring activities provide essential knowledge regarding bedload transport processes in large rivers. We have identified the initiation of motion under low flow conditions and a decrease in the rate of bedload discharge with increasing water discharge around bankfull conditions. Bedload flux strongly increases again during high flood events when the entire inundation area is flooded. No bedload hysteresis was observed. The effective discharge for bedload transport was determined to be near mean flow conditions, which is therefore at a lower flow discharge than expected. A numerical sediment transport model was able to reproduce the measured sediment transport patterns. The unique dataset enables the characterisation of bedload transport patterns in a large and regulated gravel‐bed river, evaluation of modern river engineering measures on the Danube, and, as a pilot project has recently been under construction, is able to address ongoing river bed incision, unsatisfactory ecological conditions for the adjacent national park and insufficient water depths for inland navigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
A knowledge of the quantity of the sand fraction in the sediments deposited in reservoirs makes it easier to determine the bedload transport, which is a rarely measured parameter. The current study discusses the results of investigations into the siltation and physical properties of sediment in two small reservoirs located in the southeastern part of Poland. Also, the quantity of the bedload sand fraction was estimated.The estimation of the reservoir capacity loss after t years of operation was based on hydroacoustic measurements. The sediment density, organic matter content, and granulometric composition were evaluated by means of investigations and analyses of bottom sediment core samples. The interpolation of the parameters describing the sediment properties was done using the Kriging method. The analyses indicate that 10.80 thousand m~3 of sediment were deposited into the Zalew Kielecki Reservoir in the years 2004-2015. Their overall mass was 7320 t, of which sand fraction sediments constituted 39.7%.Between the years 2004 and 2014, the Umer Reservoir retained 11.79 thousand m~3 of sediment having a mass of 7200 t, of which sand fraction constituted 34.6%.  相似文献   

20.
Structured gravel river beds clearly exert a major influence on bed stability. Indexing structural stability by field measurements of bed strength neglects the processes operating to entrain and transport bed material in different parts of each structure. This study takes a morphological approach to interpreting the critical processes, using particle tracing to determine the movement of individual cluster particles over a range of flood event magnitudes and durations. The experiment was carried out on the River South Tyne, UK; it uses flow hydrographs measured nearby and also benefits from previous studies of historical development, channel morphology and sediment transport at the same site. More than 30 clusters were monitored over a seven‐month period during which clusters occupied 7–16 per cent of the bed. Threshold flows delimiting three apparently contrasting bed sediment process regimes for cluster particles are tentatively set at 100 m3 s?1 and 183 m3 s?1; durations of flow at these levels are critical for cluster development, rather than flow peak values. Wake particles are transported most easily. Flow straightening in the wandering channel planform reduces the stability of clusters, since mechanical strength is markedly reduced by this change of direction. The overall area covered by clusters between significant transport events varies little, implying a dynamic equilibrium condition. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号