首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the design of linear airgun arrays the interaction between the airguns is usually neglected. We review the different formulae which have been proposed for the minimum separation between airguns at which the interaction is negligible. These formulae can all be approximated by a linear function of a single variable. We have analyzed a large number of measurements in order to establish the amount of interaction between two airguns of various volumes at different pressures and depths. The resulting far-field signature has been measured and compared with the sum of the signatures from the two airguns measured in the same experimental situation. The changes in primary pulse amplitude, bubble period and primary/bubble peak-to-peak amplitude ratio were computed from the measurement data as a function of airgun separation, chamber volume, chamber pressure and airgun depth. The influence of a waveshape kit was investigated, and the effects of interaction and the effects of using a waveshape kit were compared.  相似文献   

2.
Far-field signatures from an airgun array are usually obtained by carrying out extensive field measurements. In order to decrease the need for such measurements, we have developed a method for computing signatures from linear airgun arrays where the distances between the airguns are such that the non-linear interaction among the airguns is negligible. The signature from a single airgun of a given type is computed from the following airgun parameters: airgun chamber volume, chamber pressure, airgun depth and position of the waveshape plate within the chamber. For calibration purposes, a recorded signature for one set of airgun parameters has to be provided for each type of airgun. The signatures are computed by using empirical relations between signature properties and the airgun parameters, and by treating the primary and bubble pulses separately. The far-field signature from a linear airgun array can now be computed by summation of the delayed signatures from the airguns in the array. Practical results are shown for an array with different PAR (Bolt) 1500 C airguns.  相似文献   

3.
Source strength of an airgun array may be increased by:
  • — utilizing higher pressure,
  • — increasing total array volume,
  • — employing more guns,
  • — improving gun efficiency.
One measure of gun efficiency is “specific source strength”, Pa*, defined as source strength per unit quantity of air used. Typical units are MPa m/l. Most developments are directed toward increasing gun pressure and/or gun volume to increase source strength of the array. These efforts require that more air compressors be installed onboard the ship. Consequently, a larger ship may be needed for the additional compressors, guns, and auxiliary equipment. A development program was initiated in 1976 to increase source strength of the array without using a larger ship. New guns were designed and built—one for 41.4 MPa and 7.37 liter (6000 p.s.i./450 in3) operation and another with 13.8 MPa and 4.92 liter (2000 p.s.i./300 in3) capability. Experiments were conducted with these new guns (and existing guns) over a range of pressures from 13.8 to 41.4 MPa (2000 to 6000 p.s.i.). Design of the new guns was aided by a mathematical model. The model relates physical dimensions of the airgun to acoustic pressure in the water. It consists of four nonlinear differential equations relating
  • — shuttle motion,
  • — bubble pressure,
  • — chamber pressure,
  • — bubble radius.
The last equation is the “free-bubble-oscillation equation” and represents the ideal case of a pressurized bubble released instantaneously in water. The three other equations modify this ideal case; the four equations together model an airgun of the type manufactured by Bolt Associates, Inc.  相似文献   

4.
High-speed photography has been used visually to study the shape, surface, turbulence and behaviour of an underwater oscillating bubble generated by an airgun. The source was a BOLT airgun with a chamber volume of 1.6cu.in., placed in a 0.85m3 tank at 0.5m depth. Near-field signatures were also recorded in order to compare the instant photographs of the oscillating bubble with the pressure field recorded about 25 cm from the gun. Estimations of the bubble-wall velocity and bubble radius estimated from high-speed film sequences are also presented, and are compared with modelled results. The deviation between the modelled and measured bubble radii was at most 9%. In order to check the capacity for transmission of light through the bubble, a concentrated laser beam was used as illumination. We found that the air bubble is a strong scattering medium of laser light, hence the bubble is opaque.  相似文献   

5.
During the last few years many airgun arrays have been designed with the objective of generating a short signature of high amplitude. For linear arrays of non-interacting airguns two rules have been derived that may help in the design or evaluation of airgun arrays. To achieve a short pressure pulse, the total available air volume has to be distributed over the individual guns in such a way that the tail of the signal, owing to the added bubble signals, becomes as flat as possible. When we think of ordering airguns according to volume, this flat signal tail can be achieved by designing the volumes such that the difference in bubble times of two adjacent guns is proportional to their volume to the power 2/3. The amplitude expected from a linear array of non-interacting airguns is limited by the physical length of the array. A graph of measured values tends to confirm this relation. No relation has been found between the total volume of an array and its amplitude. The graph also detects inefficient use of available array length of existing arrays.  相似文献   

6.
Un-tuned large volume airgun array in a water reservoir is recently proposed as a new way to generate seismic waves on land. It can be used to explore the earth velocity structure and its temporal variations as well. However, the characteristics of seismic signals (especially far-field signals) from an airgun array in a reservoir and its affecting factors (firing pressure, airgun towing depth, water level of the reservoir, etc.) has not been adequately studied. We analyzed the seismic data collected from field experiments at Binchuan Transmitting Seismic Station in 2011 and 2013 and found that (1) The similarity of seismic signals decrease with distance, which is most likely induced by the decay of signal amplitude and signal to noise ratio (SNR); (2) The amplitudes of far-field airgun signals are almost linearly proportional to the firing pressure; (3) The towing depth of airgun has less effects on the far-field signals; (4) The amplitudes of far-field airgun signals are proportional to the water level of the reservoir.  相似文献   

7.
大容量气枪震源子波时频特性及其影响因素   总被引:3,自引:3,他引:0  
通过分析福建街面水库气枪实验的近场水听器记录,研究气枪子波时频特性及其受沉放深度和工作压力的影响,并结合气泡模型解释气泡振荡过程。数据分析表明:①气枪子波由主脉冲和气泡脉冲组成。主脉冲振幅大,持时短,频带宽,通常应用于浅部探测;气泡脉冲能量集中在低频段,垂直穿透深,水平传播远,通常应用于深部探测。②随沉放深度的增加,主脉冲振幅变化很小,气泡脉冲振幅增加,初泡比减小,气泡周期减小,低频段主频增加。沉放深度为10m时,主脉冲振幅和初泡比最大,可应用于浅部探测;沉放深度为25m时,气泡脉冲振幅很大,初泡比最小,可应用于深部探测。③工作压力增加时,主脉冲振幅、气泡脉冲振幅、初泡比、气泡周期等随之增大,低频段主频则减小。  相似文献   

8.
Experiments in an 850 litre water tank were performed in order to study temperature effects on airgun signatures, and to achieve a better understanding of the physical processes that influence an airgun signature. The source was a bolt airgun with a chamber volume of 1.6 cu.in. The pressure used was 100 bar and the gun depth was 0.5 m. The water temperature in the tank was varied between 5°C and 45°C. Near-field signatures were recorded at different water temperatures. Typical signature characteristics such as the primary-to-bubble ratio and the bubble time period increased with increasing water temperature. For comparison and in order to check whether this is valid for larger guns, computer modelling of airguns with chamber volumes of 1.6 and 40 cu.in. was performed. In the modelling the same behaviour of the signatures with increasing water temperature can be observed. The increase in the primary-to-bubble ratio and the bubble time period with increasing water temperature can be explained by an increased mass transfer across the bubble wall.  相似文献   

9.
Recently the author developed and demonstrated (Safar 1980) an efficient method for operating the airgun. The method involves the generation of a short seismic pulse from the pressure bubble pulses radiated by an airgun when fired several times at the same optimum depth but with different chamber pressures. The purpose of this paper is to present and discuss the test results obtained when implementing the same method using a two-dimensional airgun array. The array consists of seven 0.65 liter airguns fired simultaneously at the same depth but with different chamber pressures. It is shown that the far-field pressure pulse radiated by the seven 0.65 liter airgun array is similar to that radiated by the Flexichoc seismic source. It is concluded that the proposed airgun array can be used as a subarray to form an extremely powerful super-long array suitable for deep seismic exploration. The author would like to thank the Chairman and Board of Directors of the British Petroleum Co. Ltd for permission to publish this paper. Thanks are also due to Mike Symes and Lovell Cox for carrying out the field tests and Seismograph Service (England) Ltd for providing the airguns.  相似文献   

10.
In recent years considerable work has been done to devise a satisfactory non-dynamite seismic system that would replace dynamite in offshore areas. Prior to the advent of digital recording and processing, the non-dynamite sources have generally not provided the depth of penetration or the resolution required for satisfactory seismic interpretation. More recent developments in non-dynamite offshore marine sources include adaptation of the Vibroseis from a land unit to a marine unit, and adaptation of the Dinoseis unit from a land to a marine unit. The SUE (Seismic Underwater Explorer) system is a thermodynamic non-dynamite source utilizing a mixture of propane and oxygen detonated in a special chamber approximately 15 feet below the water surface. This source gives penetration to more than 4 sec in areas typified by Gulf of Mexico type geology and shows deeper penetration than had previously been obtained by dynamite along the western United States in areas with 20 lb charge limitations. A pneumatic source, the airgun, has been in production use in the United States since June 1966. This non-dynamite source provides an intriguing amount of versatility and can be expanded to provide additional energy as necessary to obtain the penetration desired. Tests using systems comprised of from eight to twenty-three airguns show penetration in excess of 5 seconds in many areas. Power spectra comparisons both in amplitude and frequency content demonstrate that this is a controlled source generating a controlled seismic wavelet and a controlled frequency spectrum that can be tailored to fit requirements of particular areas. Sample sections obtained in the Gulf of Mexico and the Pacific Ocean offshore California show adequate penetration to 5.0 seconds reflection time. Quantitative measurements with the airguns demonstrate the effect of:
  • 1 Variation of the number of guns in the system;
  • 2 Shaping the frequency spectrum by using different sizes of airguns in the system;
  • 3 Effects on signal-to-noise ratios as a result of stacking several small energy sources together;
  • 4 Reproducibility of the initial pulse wavelet from shot to shot.
The improvement in record quality as a result of advanced digital processing with non-dynamite sources is comparable to that obtained with dynamite sources. Non-dynamite sources make additional improvements possible where high source multiplicity is advantageous. Excellent dynamic correlations yield accurate velocity control as well as definitions of apparent velocities attributable to multiples and primary-to-multiple amplitude relationships. Non-dynamite sources are being used more and more extensively in offshore exploration. The advent of digital recording and processing provides a means for improving depth of penetration and resolution of many non-dynamite sources.  相似文献   

11.
大容量气枪震源长江定点激发信号检测   总被引:3,自引:2,他引:1  
地学长江计划“安徽段实验”是大容量气枪震源在长江的首次激发。本文针对布设在气枪固定激发点附近的流动台和周边固定台接收到的气枪信号进行线性叠加分析近场和远场信号的时频特性,利用叠加结果检测气枪信号的传播特性,分析不同环境因素对信号传播距离的影响。结果表明:①近岸首台可以接收到清晰的压力脉冲、气泡脉冲的体波和面波信号;②气枪信号主频为5Hz左右,随震中距的增加,压力脉冲信号衰减很快,信号主频频带变窄;③对信号传播距离进行初步检测,最近的传播距离为180km,最远共有3个激发点传播达到260km,夜晚激发信号传播距离较远。  相似文献   

12.
This paper reports the field setup and preliminary results of experiments utilizing an airgun array in a reservoir in north China for a seismotectonic study. Commonly used in offshore petroleum resource exploration, the airgun source was found to be more useful than a traditional explosive source for large‐scale and long offset land seismic surveys. The airgun array, formed by four 1,500 in3 airguns (a total of 6,000 in3 in volume) was placed at a depth of 6–9 m into the reservoir to generate the pressure impulse. No direct evidence was found that the airgun source adversely affected the fish in the reservoir. The peak ground acceleration recorded on the top of the reservoir dam 100 m away was 17.8 gal in the horizontal direction; this is much less than the designed earthquake‐resistance threshold of 125 gal for this dam. The energy for one shot of this airgun array is about 6.68 MJ, equivalent to firing a 1.7 kg explosive. The seismic waves generated by the airgun source were recorded by receivers of the regional seismic networks and a temporary wide‐angle reflection and refraction profile formed by 100 short‐period seismometers with the maximum source‐receiver offset of 206 km. The seismic wave signature at these long‐offset stations is equivalent to that generated by a traditional blast source in a borehole with a 1,000–2,000 kg explosive. Preliminary results showed clear seismic phases from refractions from the multi‐layer crustal structures in the north China region. Forward modelling using numerical simulation confirms that the seismic arrivals are indeed from lower crustal interfaces. The airgun source is efficient, economical, environmentally friendly and suitable for being used in urbanized areas. It has many advantages over an explosive source for seismotectonic studies such as the high repeatability that is supreme for stacking to improve signal qualities. The disadvantage is that the source is limited to existing lakes or reservoirs, which may restrict experimental geometry.  相似文献   

13.
A theoretical model is developed for predicting three important parameters of the pressure pulse radiated by an air-gun, namely the rise time, the amplitude of the initial pulse, and the period of the bubble pulse. A knowledge of these three parameters is essential for the efficient design of air-guns arrays. The prediction of the amplitude of the initial pulse is based on the assumption that the initial pulse is radiated by a spherical source with surface area equal to that of the air-gun ports and not by a spherical source with initial volume equal to that of the air-gun chamber, as has been assumed previously. A simple equation is obtained for predicting the period of the bubble pulsation, taking into account the effect of the air-gun body, boundaries such as the sea-surface and seabed and the presence of a number of identical air-guns placed at the same depth and fired simultaneously.  相似文献   

14.
The article provides a theoretical basis for the extension of the method of scaling law deconvolution to three dimensions using airgun arrays as a sound source. Earlier papers by the author required the dimensions of the scaled sources to be different while the depths and firing pressures were maintained the same in order to preserve the same dynamics of the scaled sources at scaled time. However, this forces the source ghost to be considered as part of the impulse response of the earth rather than as part of the downgoing source wave. And, in fact, the dynamics of the scaled sources are not the same at the same depth because the ghost reflection modulates the behaviour of the oscillating bubbles generated by the airguns, and this modulation does not scale. To force the sources to scale properly, including the ghost interaction, the larger source must be put at greater depth, where hydrostatic pressure is greater, and the initial firing pressure must be adjusted accordingly. Thus, the depth, initial firing pressure and gun volume are all variables. The interaction among guns in scaled airgun arrays also scales exactly if the geometry of an array and the depth of its deployment are scaled by the same factor.  相似文献   

15.
Three models for the dynamics of seismic airgun‐generated bubbles and their associated far‐field signals are developed and compared with geophysical data. The first model of an airgun‐generated bubble uses a spherical approximation, the second is an approximate Lagrangian model which allows for small deformations from a spherical shape, whilst the final model is an axisymmetric boundary‐integral method which permits the bubble to evolve into highly non‐spherical geometries. The boundary‐integral method also allows both geometric interference and strong dynamic interactions in multi‐bubble studies. When comparing the spherical model to experimental data there are three apparent, significant differences: the magnitude of the primary pressure peak, which is greater in the model; the subsequent decay of the pressure peaks and motion – the experimental data demonstrating greater decay and a slower rise rate; and the frequency of oscillation, which is slower in the experimental data. It is believed that the first discrepancy is due to the initial stages of expansion where the compressed air is forced to sparge through the airgun ports. The other differences indicate that there is some other energy‐loss mechanism which is not accounted for in the spherical bubble model. Non‐spherical bubble behaviour is investigated through the use of two different deformable many‐bubble codes and their predictions are compared with the spherical model and experimental data. The Lagrangian model predicts the formation of a buoyancy‐driven liquid jet on the first collapse of a typical airgun bubble; however, the model breaks down when the bubble becomes significantly deformed, due to a low‐order spherical‐harmonic approximation for the potential. The axisymmetric boundary‐integral code models the jet shape accurately and it is found that these bubbles evolve to toroidal geometries when the jet impacts on the opposite surface of the bubble. This highly non‐spherical behaviour is readily observed on high‐speed films of airgun bubbles, and is one key source of energy loss; it damps the pulsations of the bubble and slows its rise speed. Inter‐bubble interactions are investigated using the two deformable bubble models, and the predictions are compared to field data. It was found that as the bubbles approach each other, their periods of oscillation increase in accordance with observations, and jets are formed in the direction of motion upon collapse.  相似文献   

16.
A new technique is developed for calibrating a low-frequency hydrophone. The technique involves the use of pressure pulses radiated by the Par 0.65 liter airgun when fired at a fixed depth but with various values of initial chamber pressure. The sensitivity of a low-frequency hydrophone, when determined by the proposed technique, is found to be in agreement with that obtained by using the so-called “impulse method”.  相似文献   

17.
In 1989 a new type of marine seismic source was introduced. This new air-gun, which consists of two air chambers instead of one, is called the GI gun. The main feature of this gun is that the bubble created by the gun is stabilized by an injection of extra air from the second chamber at a later time. This injection mechanism reduces the amplitude of the bubble oscillations, which also means that the acoustic signal from a GI gun shot is characterized by a very clean primary pulse followed by very small bubble oscillations. A method for calculating the acoustic signal generated by a GI gun is presented. Based on the solution of a damped Kirkwood–Bethe equation, the far-field pressure of single GI guns and of arrays of GI guns is calculated. It is shown that the optimal values for injection start time and injection period vary with injector volume and gun depth. It is also shown that the precision in the firing time for the injector should be of the order of 4 ms, while the precision of the injection period should be of the order of 8 ms. Modelled and measured far-field signatures have been compared, and the relative error energy is found to be less than 3.5% for all examples.  相似文献   

18.
We have used a suite of remotely sensed data, numerical lava flow modeling, and field observations to determine quantitative characteristics of the 1995 Fernandina and 1998 Cerro Azul eruptions in the western Galápagos Islands. Flank lava flow areas, volumes, instantaneous effusion rates, and average effusion rates were all determined for these two eruptions, for which only limited syn-eruptive field observations are available. Using data from SPOT, TOPSAR, ERS-1, and ERS-2, we determined that the 1995 Fernandina flow covers a subaerial area of 6.5×106 m2 and has a subaerial dense rock equivalent (DRE) volume of 42×106 m3. Field observations, ATSR satellite data, and the FLOWGO numerical model allow us to determine that the effusion rate declined exponentially from a high of ~60–200 m3 s-1 during the first few hours to <5 m3 s-1 prior to ceasing after 73 days, with a mean effusion rate of 4–16 m3 s-1. Integrating the ATSR-derived, exponentially declining effusion rate over the eruption duration produces a total (subaerial + submarine) DRE volume of between 27 and 100×106 m3, the range in values being due to differing assumptions about heat loss characteristics; only values in the higher part of this range are consistent with the independently derived subaerial volume. Using SPOT, TOPSAR, ERS-1, and ERS-2 data, we determine that the 1998 Cerro Azul flow is 16 km long, covers 16 km2, and has a DRE volume of 54×106 m3. FLOWGO produces at-vent velocity and effusion rate values of 11 m s-1 and ~600 m3 s-1, respectively. The velocity value agrees well with the 12 m s-1 estimated in the field. The mean effusion rate (total DRE volume/duration) was 7–47 m3 s-1. Dike dimensions, fissure lengths, and pressure gradients along the conduit based on magma chamber depth estimates of 3–5 km produce mean effusion rates for the two eruptions that range over nearly four orders of magnitude, the range being due to uncertainty in the magma viscosity, dike dimensions, and pressure gradient between magma chamber and vent. Although somewhat consistent with mean effusion rates from other techniques, their wide range makes them less useful. The exponentially declining effusion rates during both eruptions are consistent with release of elastic strain being the driving mechanism of the eruptions. Our results provide independent input parameters for previously published theoretical relationships between magma chamber pressurization and eruption rates that constrain chamber volumes and increases in volume prior to eruption, as well as time constants of exponential decay during the eruption. The results and theoretical relationships combine to indicate that at both volcanoes probably 25–30% of the volumetric increase in the magma chamber erupted as lava onto the surface. In both eruptions the lava flow volumes are less than 1% of the magma chamber volume.  相似文献   

19.
《水文研究》2003,17(17):3543-3543
  • AGI 2004 Ocean Sciences Meeting
  • Portland, Oregon, USA
  • 26–30 January 2004
  • Sponsor: AGU
  • Contact: A Singer, AGU, 2000 Florida Avenue, NW, Washington, DC 20009, USA
  • Tel: +1 202 777 7340
  • Fax: +1 202 328 0566
  • E‐mail: asinger@agu.org
  • Website: agu.org/meetings/
  • International Conference on Groundwater Vulnerability Assessment and Mapping
  • Sosnowiec, Poland
  • 16–19 June 2004
  • Contact: Dr Andrzej J. Witkowski, Secretariat of the Conference, University of Silesia, B?dzińska Str., 60, 41‐200 Sosnowiec, Poland
  • Tel: +48 32 291 68 88
  • Fax: +48 32 291 58 65
  • E‐mail: switkows@us.edu.pl
  • Website: http://khgi.wnoz.us.edu.pl/vulnerability.htm
  • BHS International Conference on ‘Hydrology: Science and Practise for the 21st Century’
  • Imperial College, London
  • 12–16 July 2004
  • Contact: Dr Adrian Butler
  • Tel: 020 7954 6122
  • Fax: 020 7594 6124
  • E‐mail: a.butler@ic.ac.uk
  • Website: http://www.hydrology.org.uk/index.html
  • 32nd International Geological Congress
  • Florence, Italy
  • 20–28 August 2004
  • Website: www.32igc.org
  • XXXIII Congress of IAH—Conference on Groundwater Flow Understanding: From Local to Regional Scale. Joint Conference IAH/ALHSUD
  • Mexico
  • 11–15 October 2004
  • E‐mail: aih@igris.igeograf.unam.mx
  • Website: www.igeograf.unam.mx/aih
If you would like your conference included please E‐mail details to Anne Flynn. E‐mail: aflynn@wiley.co.uk Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The numerical simulation of the influence of a reservoir water body on the Binchuan airgun source could provide a theoretical basis to analyze the data obtained from the active source detection and inversion of regional interior medium structures. Based on a medium model containing limited water body, we use the finite different method to simulate the effect of the water level, excitation energy and focal depth. The results show that the influence on the waveform amplitude caused by the water level changing is very large near the water body, and that a high water level or large amplitude change can have a larger effect. However, for stations beyond a certain epicentral distance, the influence will be weakened and kept stable. As for the Binchuan airgun source, amplitude fluctuation caused by the water level changing becomes very small(±0.05 times) after propagating a certain distance, so we can remove the influence of the water level changing by referring to the numerical simulation result. Wave amplitude increases linearly with the excitation energy and focal depth, therefore, the greater the energy and the deeper the focal depth, the better the effect of the excitation, and is more conducive in detecting remote and deep penetration underground structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号