首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王岗  潘一山  肖晓春 《岩土力学》2019,40(5):1823-1831
为了完善电荷感应方法用于冲击地压的预测预报,利用自主研制的电荷监测系统开展了室内单轴压缩条件下煤样破裂电荷监测试验。重点分析了煤样的破坏类型、力学特性以及不同破坏类型下电荷时-频域信号规律,并对试验结果进行了工程验证。研究结果表明:煤样变形破坏特征可分为单剪型、共轭剪切型和破碎型;单剪型煤样电荷时域信号仅在峰后破坏初期,应力跌落至97% 左右时产生,前兆信息难以捕捉,信号具有孤立性,幅值较高,电荷频率分布离散,主频为250 Hz。此特征电荷信号预示着相应工程煤体可能发生局部化破坏,将集聚的能量瞬间释放,冲击危害程度较大;共轭剪切型煤样电荷时域信号在强化损伤后期,应力达到(85%~100%) 时开始产生,信号具有间隔突发性,主频为150 Hz。预示着煤体可能发生分区化破裂,能量间断释放,冲击危害程度次之;破碎型煤样电荷时域信号在强化损伤初期,应力达到(70%~85%) 时就开始产生,前兆信息易于捕捉,信号具有群发性,幅值较低,主频为0 Hz。预示着煤体可能发生均匀型破碎,能量缓慢释放,冲击危害程度较小。现场监测结果表明,在工作面煤体破碎区和发生煤炮时监测到的电荷信号特征,与试验室煤样发生均匀型破碎和单剪型破裂而产生的电荷信号特征具有高度相似性,验证了试验室结果的可靠性。  相似文献   

2.
为了完善电荷感应方法用于冲击地压的预测预报,利用自主研制的电荷监测系统开展了室内单轴压缩条件下煤样破裂电荷监测试验。重点分析了煤样的破坏类型,力学特性以及不同破坏类型下电荷时-频域信号规律,并对试验结果进行了工程验证。研结果表明:煤样变形破坏特征可分为单剪型、共轭剪切型和破碎型;单剪型煤样电荷时域信号仅在峰后破坏初期,应力跌落至97%cσ左右时产生,前兆信息难以捕捉,信号具有孤立性,幅值较高,电荷频率分布离散,主频为250Hz。此特征电荷信号预示着相应工程煤体可能发生局部化破坏,将集聚的能量瞬间释放,冲击危害程度较大;共轭剪切型煤样电荷时域信号在强化损伤后期,应力达到85~100%σ_c时开始产生,信号具有间隔突发性,主频为150Hz。预示着煤体可能发生分区化破裂,能量间断释放,冲击危害程度次之;破碎型煤样电荷时域信号在强化损伤初期,应力达到70~85%σ_c时就开始产生,前兆信息易于捕捉,信号具有群发性,幅值较低,主频为0Hz。预示着煤体可能发生均匀型破碎,能量缓慢释放,冲击危害程度较小;现场监测结果表明,在工作面煤体破碎区和发生煤炮时监测到的电荷信号特征,与试验室煤样发生均匀型破碎和单剪型破裂而产生的电荷信号特征具有高度相似性,验证了试验室结果的可靠性。  相似文献   

3.
为探究煤岩在变轴压加载下的变形破坏和瓦斯渗流演化规律,以原煤煤粉压制的煤体试件为研究对象,采用含瓦斯煤热流固耦合三轴伺服渗流试验系统,进行了5种不同轴压加载路径下的煤体三轴压缩及瓦斯渗流试验。研究结果表明,煤体变形可分为压密、稳定发展、非稳定破裂发展和破裂后4个阶段;压密阶段试件的应变变化速率主要与张开性结构面和裂隙有关,与轴压加载区间无关,稳定发展阶段虽然轴压加载速率不同,但在相同的轴压加载区间,轴向应变变化速率基本相同;变轴压加载前期煤体渗透率与轴压的加载速率呈负相关变化,中后期渗透率变化速率与轴压加载速率相关性不大。研究结论对指导冲击地压以及煤与瓦斯突出的监测预警有着重要意义。  相似文献   

4.
《岩土力学》2017,(12):3419-3426
为建立加载速率影响下煤体不同失稳形式的声发射-电荷判据,以阜新五龙矿某工作面为研究对象,采用物理试验研究方法,开展了不同加载速率下煤体破裂过程声-电荷监测试验,深入研究了加载速率影响的煤体力学性质、破裂规律和煤体破裂过程能量耗散与声发射-电荷信号的对应关系。研究结果表明:加载速率越高,应力调整越提前,煤样单轴抗压强度增加,累积变形能耗散加剧,煤体失稳形式由静载失稳过渡到类动载扰动失稳,煤体失稳破坏的动力特征明显,压缩型冲击地压动力灾害发生几率增大;不同加载速率下煤岩破裂过程产生的声-电荷信号变化与煤岩受载的应力突变具有较好的一致性;对所用煤样的声发射-电荷信号进行量化分析,初步提出了判定煤体失稳形式的声-电荷复合判定依据,在不同矿区、不同工作面上,可依据监测获得的声-电荷现场数据辅以采动应力场的变化情况,对采动过速诱发的煤体压缩型冲击地压的发生几率进行预测和预警。  相似文献   

5.
岩样单轴压缩的失稳破坏和试验机加载性能   总被引:7,自引:2,他引:7  
尤明庆 《岩土力学》1998,19(3):43-49
岩样单轴压缩过程的应力-应变曲线是特定岩样与试验机共同作用的结果,并非岩石材料的力学特性;以此观点研究了不同形状岩样峰后强度降低的规律.给出了岩样与试验机联合作用模型,得到了简单而明确的岩样失稳破坏准则;讨论了电液伺服试验机的加载特性和获取全程曲线的方法,并对Ⅱ类全程曲线作出了新的解释。  相似文献   

6.
为研究型煤在单轴压缩破裂过程中产生的微震、电磁辐射信号与裂纹演化特征的对应关系,利用自主设计的低噪声静态加载试验系统,对0~0.25、0.25~0.5、0.5~1.0、1~2 mm共4种不同粒度的型煤进行了单轴压缩破坏试验,同步采集了煤样破坏过程中的微震、电磁辐射信号及破坏视频图像,提出了一种煤体裂纹快速提取方法并计算了型煤裂纹面积的变化规律。研究结果表明:型煤在单轴压缩过程中产生的微震、电磁辐射信号及裂纹面积在时域上具有良好的同步性。型煤破坏过程中裂纹面积随时间变化曲线可分为4个阶段。第1阶段为压实阶段,煤样所受应力值较小,其表面的裂纹面积以极为缓慢的速率增加。第2阶段为初始破裂阶段,随着应力的增加和内部弹性势能的积聚,型煤表面裂纹面积的增加速率较压实阶段有明显提高,伴随产生许多细小裂纹。第3阶段为加速破裂阶段,随着应力继续增加以及材料内部积聚弹性能的释放,试样变形过程加速,导致裂纹面积增速进一步增大。第4阶段为卸压阶段,试样的裂纹面积达到最大值,承载能力急剧降低,发生失稳破坏。  相似文献   

7.
为了研究煤孔裂隙各向异性,进一步揭示煤微观结构及物性特征。选取平顶山矿区八矿煤样,采用核磁共振(NMR)方法,对比分析单轴加载前后煤样的横向弛豫谱(T2)特征和核磁成像(MRI)特征。实验结果表明,煤的T2谱特征具有显著的各向异性:平行于层理且垂直主裂隙X方向T2谱为3峰谱图,平行于层理且平行主裂隙Y方向T2谱为双峰谱图,垂直层理Z方向T2谱主要以单峰为主;单轴加载后煤样T2谱面积、孔隙度减小,XY方向煤样孔隙变化引起的峰面积所占比例下降,裂隙变化引起的峰面积占比例上升;Z方向裂隙变化引起的峰面积占比例下降;MRI揭示出,单轴加载后平行层理方向煤样孔裂隙大部分闭合,部分裂隙产生径向变形;加载方向裂隙大部分闭合,压实效应显著。综上所述,单轴加载下,煤样各向异性特征显著,同时表明核磁共振技术是研究煤孔裂隙微观变化的有效手段。  相似文献   

8.
为了研究煤体静载破坏中低频磁场变化特征及其产生机制,进一步完善煤矿动力灾害监测预警技术,通过室内试验、现场试验研究了煤体静载破坏中低频磁场时、频谱特征,并结合微震信号提出了低频磁信号的产生机制。结果表明:煤体静载破坏中所产生低频磁场信号强度为19~156 nT,信号最大幅值、能量与试样强度、加载速度均呈正相关关系。垂直于裂纹扩展面磁场最强,平行于裂纹扩展面磁场最弱。并结果微震信号提出了低频磁场产生机制。低频磁场与微震信号具有时、频域同步性,带电裂纹面随微震信号同频振荡为低频磁场产生机制。现场放炮破煤低频磁信号由簇状脉冲信号及小幅震荡信号组成,其中簇状脉冲成分产生于炮后振动波带动带电壁面的同频振动,而小幅震荡成分是巷帮煤壁趋向新应力平衡状态时发生的横向拉伸破坏及带电煤碎屑运移、摩擦及转动的结果。  相似文献   

9.
在煤岩弹性波响应特征研究中,较少系统地考虑轴压对煤岩纵、横波速度和衰减的影响。基于此,选取平煤八矿3种不同变质程度煤样,制备垂直层理、平行层理垂直面割理和平行层理垂直端割理3类煤样,进行煤岩单轴应力作用下的超声测试。实验结果表明:(1)在自然状态下,3种变质程度煤样3个方向的纵、横波速度以及品质因子均存在各向异性,一般情况下平行层理的两个方向纵、横波速度以及品质因子均大于垂直层理方向;(2)煤岩的纵、横波速度随着轴压的增加呈现先快速增加,后缓慢增大,直至煤样破坏后波速迅速降低的阶段性变化规律,横波速度阶段性变化规律不如纵波明显;(3)3个方向品质因子都随着应力的增加呈现先增加后减小的变化趋势,且Q_s普遍比Q_p大;(4)不同变质程度煤样,纵、横波速度和品质因子差异均比较明显,1/3焦煤纵、横波速度大于焦煤大于肥煤。  相似文献   

10.
为探究煤体在不同水力荷载路径下的微观渗流特征,通过CT三维重建技术,建立了基于煤体微观结构的双介质渗流模型,并设计了恒定速度加载(LP1)、常规脉动加载(LP2)和强加载缓卸载加载(LP3)3种水力荷载路径,进行了在不同循环荷载路径下的煤体注水渗流数值模拟试验。另外利用自行搭建的煤体注水装置,探究了3种荷载路径下的宏观损伤情况。结果表明:联通裂隙占孔裂隙结构的73.49%,是影响煤体渗流的主要因素,而孔径为9~23μm的孔隙是孤立孔隙中的主要部分,数量和体积占比均超过了50%;煤体内部孔裂隙结构和荷载路径对渗流速度和压力的分布特征具有重要影响。LP1沿注入方向平均渗流速度的波动较大,LP3则抑制效果明显,且LP3路径较LP1和LP2随时间有较大跨度。LP3的荷载路径相对于LP1具有脉动荷载的疲劳损伤效果,并且造成的损伤程度强于LP2。该研究可为煤体微观结构研究和煤层注水技术参数优化提供方向。  相似文献   

11.
为了探讨破坏程度不同煤体的力学行为、红外辐射及裂隙演化特征,进行了单轴压缩过程中同步红外辐射检测试验,分析了不同试样受载后力学行为及红外辐射响应特征。在试样宏观力学特性的基础上,采用颗粒流PFC2D对试样单轴压缩进行模拟,从细观尺度上分析了试样裂隙的演化特征。研究结果表明:破坏程度影响了试样的强度、变形特征,随着破坏程度的增强,试样表现出弱脆性、强塑性特征;破坏程度不同试样均表现出增温的时变特征,Ⅰ类、Ⅱ类试样临破裂前温度出现骤增的前兆特征,温度突增可达1.7℃左右,而Ⅲ类试样则表现为先骤降后快速上升的变化特征,温度增加0.93℃;加载过程中红外热像出现分异特征,高温或低温异常区域对应着煤岩试样破坏的空间位置;试样破坏区域与红外辐射异常区域大致相同,内部损伤(裂隙发育)与表面损伤(红外辐射)有着密切的关联性。该研究结果可为破坏程度不同煤体采掘过程中的动力灾害预警提供参考。  相似文献   

12.
页岩在重庆地区分布较广,在隧址围岩赋存环境中占较大比重,考虑到层理和水对页岩性质影响显著,因此,对页岩在层理和含水率影响下损伤破坏过程和劣化机制进行研究。试验借助于MTS815岩石力学测试系统和PAC声发射仪,进行单轴压缩条件下层状页岩损伤破坏过程的声发射试验研究,并采用大型离散元软件3DEC对页岩破坏模式进行对比分析。研究结果表明:(1)页岩的矿物成分、矿物排列和加载方向决定其损伤破坏过程,原生微裂隙的分布、矿物晶粒大小和加载方向决定了宏观裂隙的分布,宏观裂隙则控制着页岩的破坏模式。(2)页岩内部沿层理方向原生微裂隙群是页岩破坏起裂部位,次生微裂隙常沿矿物边界发展,与加载方向基本一致,最终形成宏观裂隙,起到连通层理破裂面的作用。(3)层状页岩AE事件的生成和分布与试件内部的微裂隙分布关系密切,初始压密阶段积聚于试件中部层理附近,后沿层理法向方向向端部或两侧发展,最终沿宏观裂隙转折及交点处聚结成核。(4)层理和水对页岩的损伤劣化机制不同,层理对页岩的损伤作用本质上是沿层理分布的原生微裂隙群的损伤作用,而水对页岩的损伤作用主要是水的吸附和毛细管压力作用。  相似文献   

13.
岩体的声学特性与应力状态和破坏程度密切相关,通过岩体声学特性的变化来分析岩体应力状态进而评价工程稳定性是一种行之有效的工程措施。针对砂岩开展了单轴压缩试验,并在加载过程中同步进行3个方向的声波测试,获得了砂岩加载过程中3个不同方向声波波速与应力的演化规律。试验结果表明:随着应力的增加,轴向波速逐渐增大,横向波速表现出先增后减的趋势。考虑到不同方向声波测试结果的差异性,采用含不同倾角裂隙的石膏试样进行声波试验。结果表明,当裂隙方向与声波传播方向一致时,波速最大,与声波传播方向垂直时,波速最小;此外,为分析岩样波速与应力状态的相关性,建立了波速与体应变的关系,结果表明,随着体应变的增加,平均波速逐渐增大,在体应变达到最大值附近时,平均波速达到最大值,在体应变下降阶段,波速开始下降;根据轴向波速与应力的变化规律,得到了应力与波速的指数函数拟合公式,据此可以通过现场测试获得的波速预测现场岩体的应力范围,进而评价工程岩体稳定性。  相似文献   

14.
岩溶化裂隙岩体是普遍发育于自然界中具有初始损伤的岩体。为了研究岩溶化裂隙岩体损伤破坏特征,本文以贵州某地赋存的溶蚀岩体为研究对象,运用损伤力学理论构建岩溶化裂隙岩体在单轴压缩条件下的损伤演化模型,并建立岩溶化裂隙岩体损伤演化方程。采用颗粒流数值软件进行单轴压缩数值试验,进一步研究岩溶化裂隙岩体试件在单轴压缩条件下的损伤演化特征,分析岩溶化裂隙岩体的微观损伤特征。结果表明:岩溶化裂隙岩体的初始损伤主要包括溶蚀损伤和裂隙损伤。岩溶化裂隙岩体的初始损伤随着溶蚀率的增加而增加,最终增加速率趋于平缓;岩溶化裂隙岩体的损伤演化曲线均呈“S”型变化,先缓慢增加,再迅速增加,最后缓慢增加至损伤值1;岩溶化裂隙岩体存在异构特征,导致破坏裂隙起源于具有初始损伤的溶蚀孔洞和裂隙处,随后裂隙经历萌发、扩张和剪切作用、数量和长度增加以及裂隙贯通4个阶段后发生宏观破坏。  相似文献   

15.
单轴压力作用下岩石破坏机理分析与应用   总被引:1,自引:0,他引:1  
单轴压力作用下,从微观出发,岩石破坏是由体内微裂纹中的拉应力所致,如果出现类似于剪切破坏的情况,可近似地认为是试件端部与实验台之间的摩擦力所致.本文采用宏观方法,应用弹性力学和应力叠加原理相组合,从变形协调角度出发,得出试件内部不存在拉应力;用数值模拟物体的单轴压力状态仍然没有拉应力.由此提出,最大伸长理论也同样能解释在单轴压力作用下岩石的破坏.并且推导出在围压达到临界围压时岩石的破坏转变为剪切破坏.  相似文献   

16.
大型水力压裂是干热岩地热能开发中人工储留层建造的最有效手段,其核心力学问题为高温、高压下岩石的水力破岩机制。通过单轴应力下带钻孔花岗岩注入高温蒸汽破坏试验,研究固-热耦合作用下花岗岩的水力破岩机制。结果表明:高温对花岗岩破裂有很大的促进作用,热效应导致强度弱化,降低破裂压力。高速率注入430℃和350℃蒸汽破坏试验中,破裂压力比常温水压裂至少降低58%;低速率注入400℃和450℃蒸汽破坏试验中,花岗岩破裂压力比常温水压裂降低75%。注蒸汽破坏过程可分为热破裂损伤和宏观裂缝扩展两个阶段。高温蒸汽产生的热应力在钻孔周围随机发生热破裂,随着注入蒸汽时间的增加,热破裂范围由钻孔附近逐渐向远处扩展,热破裂分布密度增大,为宏观裂缝的产生提供便利条件。初始宏观裂缝首先出现在钻孔两侧,沿着最终形成的宏观裂缝轨迹扩展,直到试样破坏。与常温水压裂相比,低速率注蒸汽破坏是一个缓慢的延性拉破坏过程,裂缝相对钻孔不对称扩展,宽度小于水力压裂裂缝宽度。  相似文献   

17.
水力压裂作为一种改造储层渗透性、压裂增产的技术,对页岩气开采具有重要意义。为研究射孔附近水力压裂过程中页岩各向异性特征对破裂压力及裂缝扩展的影响规律,开展了单轴试验条件下不同层理角度的页岩水力压裂试验。研究表明:页岩的破裂压力存在明显的各向异性,破裂压力随层理角度的分布曲线呈U型分布,其中0°和90°破裂压力最大,30°最小;页岩的破裂形态主要有两种,一种为沿着最大主应力方向即竖直方向起裂并延伸,另一种模式为裂缝先沿着最大主应力方向起裂并延伸,延伸过程中直接穿过层理面,随后渐渐转向为沿层理面方向扩展;破裂机制则包括拉张破坏和拉张剪切混合破坏。研究结果对于深入了解页岩裂缝起裂和延伸机理、水力压裂施工设计等具有重要的意义。  相似文献   

18.
通过对泥岩在4种不同加载速率(0.005、0.05、0.5、3mm/min)下进行的系列性单轴压缩试验和分级蠕变试验,研究了加载速率及其变化对泥岩的变形强度特性和蠕变变形的影响规律。结果表明,泥岩具有明显的加载速率变化效应且表现为等速黏性特性,即:以定速率加载时,不同速率对应不同的应力-应变关系;在变速率加载时,随着加载速率的变化,泥岩的应力-应变关系也随之改变。此外,泥岩蠕变前的加载速率对蠕变变形量和蠕变速率也有显著影响。随着泥岩蠕变前加载速率的增大,蠕变变形量和蠕变速率呈现出逐渐增大的趋势。泥岩的蠕变速率随着时间的推移表现出逐渐衰减的规律,其衰减过程可分为线性衰减、对数衰减和稳定3个阶段。基于三元件模型框架和加载速率变化效应,建立了泥岩的弹黏塑性本构模型,并将其用于泥岩室内试验的数值计算。对比模型计算结果与试验结果发现,弹黏塑性本构模型可以较好地描述单轴压缩条件下泥岩的加载速率变化效应。  相似文献   

19.
花岗岩在不同含水率条件下的变形破坏特征和机制对此类工程岩体稳定性评价具有重要的意义.开展不同含水率黑云母二长花岗岩单轴压缩试验,分析破坏特征和应力-应变曲线特征,开展断口扫描电镜试验,分析微观形貌特征,研究破坏机制.试验结果表明:黑云母二长花岗岩具有明显的应变软化特征;随含水率增大,曲线上微裂隙压密阶段长度逐渐增加,稳...  相似文献   

20.
王学滨 《岩土力学》2005,26(Z2):189-195
由于从实验及理论角度研究岩样单轴拉伸条件下的破坏全过程及尺寸效应难度都很大。因此采用拉格朗日元法来研究这些问题。在峰值强度之前后,岩石材料的本构模型分别取为线弹性及拉破坏线性应变软化模型。为了使拉伸塑性区不出现在试样的端部,在试样的两侧面中部预制了2个凹槽。数值模拟结果表明,全程拉应力-拉应变曲线分为峰前和峰后阶段。在接近峰值的峰前阶段,由于两凹槽附近具有明显的拉应力集中现象,拉伸塑性区最先出现在两凹槽附近。随着轴向拉应变的增加,发生拉伸破坏的单元的数目增加,新发生拉伸破坏的单元越来越接近试样的中心,直到两块拉伸塑性区在应变软化阶段贯通。两凹槽连线上各单元拉应力的分布呈现3个阶段,“澡盆型”(“U型”)阶段,“双峰型”(“M型”)阶段及“单峰型”(“Π型”)阶段。“澡盆型”阶段对应于全程拉应力-拉应变曲线的弹性阶段。“双峰型”阶段及“单峰型”阶段对应于全程拉应力-拉应变曲线的非弹性阶段(包括峰值强度之前的一小段,即应变硬化阶段及峰后的应变软化阶段)。增加试样高度及降低试样宽度,拉应力-拉应变曲线的软化段变得越来越陡峭,因而试样越容易发生失稳破坏。由于试样宽度较大时,试样内部的单元并非处于单向拉应力状态,因此,增加试样宽度,全程拉应力-拉应变曲线的峰值强度增加。当试样宽度较小时,从出现塑性区,到塑性区贯通所需要的时间步较小,或应变范围较窄。这说明试样的脆性较强,前兆不明显。前兆不明显的脆性破坏对应常见的是洞室岩爆、冲击地压及地震等灾害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号