首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Bayesian multiplanet Kepler periodogram has been developed for the analysis of precision radial velocity data. The periodogram employs a parallel tempering Markov chain Monte Carlo algorithm. The HD 11964 data have been re-analysed using 1, 2, 3 and 4 planet models. Assuming that all the models are equally probable a priori, the three planet model is found to be ≥600 times more probable than the next most probable model which is a two planet model. The most probable model exhibits three periods of  38.02+0.06−0.05, 360+4−4 and 1924+44−43 d  , and eccentricities of  0.22+0.11−0.22, 0.63+0.34−0.17 and 0.05+0.03−0.05  , respectively. Assuming the three signals (each one consistent with a Keplerian orbit) are caused by planets, the corresponding limits on planetary mass ( M sin  i ) and semimajor axis are     respectively. The small difference (1.3σ) between the 360-d period and one year suggests that it might be worth investigating the barycentric correction for the HD 11964 data.  相似文献   

2.
We report Doppler measurements of the stars HD 187085 and HD 20782 which indicate two high eccentricity low-mass companions to the stars. We find HD 187085 has a Jupiter-mass companion with a ∼1000-d orbit. Our formal 'best-fitting' solution suggests an eccentricity of 0.47, however, it does not sample the periastron passage of the companion and we find that orbital solutions with eccentricities between 0.1 and 0.8 give only slightly poorer fits (based on rms and  χ2ν  ) and are thus plausible. Observations made during periastron passage in 2007 June should allow for the reliable determination of the orbital eccentricity for the companion to HD 187085. Our data set for HD 20782 does sample periastron and so the orbit for its companion can be more reliably determined. We find the companion to HD 20782 has   M sin   i = 1.77 ± 0.22  M Jup  , an orbital period of 595.86 ± 0.03 d and an orbit with an eccentricity of 0.92 ± 0.03. The detection of such high-eccentricity (and relatively low-velocity amplitude) exoplanets appears to be facilitated by the long-term precision of the Anglo-Australian Planet Search. Looking at exoplanet detections as a whole, we find that those with higher eccentricity seem to have relatively higher velocity amplitudes indicating higher mass planets and/or an observational bias against the detection of high-eccentricity systems.  相似文献   

3.
An automatic Bayesian Kepler periodogram has been developed for identifying and characterizing multiple planetary orbits in precision radial velocity data. The periodogram is powered by a parallel tempering Markov chain Monte Carlo (MCMC) algorithm which is capable of efficiently exploring a multiplanet model parameter space. The periodogram employs an alternative method for converting the time of an observation to true anomaly that enables it to handle much larger data sets without a significant increase in computation time. Improvements in the periodogram and further tests using data from HD 208487 have resulted in the detection of a second planet with a period of 90982−92 d, an eccentricity of 0.370.26−0.20, a semimajor axis of 1.870.13−0.14 au and an M sin  i = 0.45+0.11−0.13 M J. The revised parameters of the first planet are period = 129.8 ± 0.4 d, eccentricity = 0.20 ± 0.09, semimajor axis = 0.51 ± 0.02 au and M sin  i = 0.41 ± 0.05  M J. Particular attention is paid to several methods for calculating the model marginal likelihood which is used to compare the probabilities of models with different numbers of planets.  相似文献   

4.
5.
6.
7.
8.
The role of radial velocity (RV) jitter in extrasolar planet search surveys is discussed. Based on the maximum-likelihood principle, improved statistical algorithms for RV fitting and period search are developed. These algorithms incorporate a built-in jitter determination, so that resulting estimations of planetary parameters account for this jitter automatically. This approach is applied to RV data for several extrasolar planetary systems. It is shown that many RV planet search surveys suffer from periodic systematic errors which increase effective RV jitter and can lead to erroneous conclusions. For instance, the planet candidate HD 74156 d may be a false detection made due to annual systematic errors.  相似文献   

9.
10.
11.
12.
We present an analysis of the significantly expanded HARPS 2011 radial velocity data set for GJ 581 that was presented by Forveille et al. (2011). Our analysis reaches substantially different conclusions regarding the evidence for a Super‐Earth‐mass planet in the star's Habitable Zone. We were able to reproduce their reported χ2ν and RMS values only after removing some outliers from their models and refitting the trimmed down RV set. A suite of 4000 N‐body simulations of their Keplerian model all resulted in unstable systems and revealed that their reported 3.6σ detection of e = 0.32 for the eccentricity of GJ 581e is manifestly incompatible with the system's dynamical stability. Furthermore, their Keplerian model, when integrated only over the time baseline of the observations, significantly increases the χ2ν and demonstrates the need for including non‐Keplerian orbital precession when modeling this system. We find that a four‐planet model with all of the planets on circular or nearly circular orbits provides both an excellent self‐consistent fit to their RV data and also results in a very stable configuration. The periodogram of the residuals to a 4‐planet all‐circular‐orbit model reveals significant peaks that suggest one or more additional planets in this system. We conclude that the present 240‐point HARPS data set, when analyzed in its entirety, and modeled with fully self‐consistent stable orbits, by and of itself does offer significant support for a fifth signal in the data with a period near 32 days. This signal has a false alarm probability of <4% and is consistent with a planet of minimum mass 2.2 M, orbiting squarely in the star's habitable zone at 0.13 AU, where liquid water on planetary surfaces is a distinct possibility (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
We present the high angular resolution technique of colour-differential interferometry for direct detection of extrasolar giant planets (EGPs). The measurement of differential phase with long-baseline ground-based interferometers in the near-infrared could allow the observation of several hot giant extrasolar planets in tight orbit around the nearby stars, and thus yield their low- or mid-resolution spectroscopy, complete orbital data set and mass. Estimates of potentially achievable signal-to-noise ratios are presented for a number of planets already discovered by indirect methods. The limits from the instrumental and atmospheric instability are discussed, and a subsequent observational strategy is proposed.  相似文献   

15.
We report the discovery of WASP-10b, a new transiting extrasolar planet (ESP) discovered by the Wide Angle Search for Planets (WASP) Consortium and confirmed using Nordic Optical Telescope FIbre-fed Echelle Spectrograph and SOPHIE radial velocity data. A 3.09-d period, 29 mmag transit depth and 2.36 h duration are derived for WASP-10b using WASP and high-precision photometric observations. Simultaneous fitting to the photometric and radial velocity data using a Markov Chain Monte Carlo procedure leads to a planet radius of  1.28 R J   , a mass of  2.96 M J   and eccentricity of ≈0.06. WASP-10b is one of the more massive transiting ESPs, and we compare its characteristics to the current sample of transiting ESP, where there is currently little information for masses greater than ≈  2 M J   and non-zero eccentricities. WASP-10's host star, GSC 2752−00114 (USNO-B1.0 1214−0586164) is among the fainter stars in the WASP sample, with   V = 12.7  and a spectral type of K5. This result shows promise for future late-type dwarf star surveys.  相似文献   

16.
We report infrared photometry of the extrasolar planet HD 209458b during the time of secondary eclipse (planet passing behind the star). Observations were acquired during two secondary eclipses at the NASA Infrared Telescope Facility (IRTF) in 2003 September. We used a circular variable filter (1.5 per cent bandpass) centred at 3.8 μm to isolate the predicted flux peak of the planet at this wavelength. Residual telluric absorption and instrument variations were removed by offsetting the telescope to nearby bright comparison stars at a high temporal cadence. Our results give a secondary eclipse depth of 0.0013 ± 0.0011, not yet sufficient precision to detect the eclipse, whose expected depth is  ∼0.002 –0.003  . We here elucidate the current observational limitations to this technique, and discuss the approach needed to achieve detections of hot Jupiter secondary eclipses at 3.8 μm from the ground.  相似文献   

17.
We present a new analysis of the expected magnetospheric radio emission from extrasolar giant planets (EGPs) for a distance limited sample of the nearest known extrasolar planets. Using recent results on the correlation between stellar X-ray flux and mass-loss rates from nearby stars, we estimate the expected mass-loss rates of the host stars of extrasolar planets that lie within 20 pc of the Earth. We find that some of the host stars have mass-loss rates that are more than 100 times that of the Sun and, given the expected dependence of the planetary magnetospheric radio flux on stellar wind properties, this has a very substantial effect. Using these results and extrapolations of the likely magnetic properties of the extrasolar planets, we infer their likely radio properties.
We compile a list of the most promising radio targets and conclude that the planets orbiting Tau Bootes, Gliese 86, Upsilon Andromeda and HD 1237 (as well as HD 179949) are the most promising candidates, with expected flux levels that should be detectable in the near future with upcoming telescope arrays. The expected emission peak from these candidate radio emitting planets is typically ∼40–50 MHz. We also discuss a range of observational considerations for detecting EGPs.  相似文献   

18.
We have used a Doppler tomographic analysis to conduct a deep search for the starlight reflected from the planetary companion to HD 75289. In four nights on VLT(UT2)/UVES in 2003 January, we obtained 684 high-resolution echelle spectra with a total integration time of 26 h. We establish an upper limit on the geometric albedo of the planet   p < 0.12  (to the 99.9 per cent significance level) at the most probable orbital inclination   i ≃ 60°  , assuming a grey albedo, a Venus-like phase function and a planetary radius   R p= 1.6 RJup  . We are able to rule out some combinations of the predicted planetary radius and atmospheric albedo models with high, reflective cloud decks.  相似文献   

19.
20.
Dynamical relaxation and massive extrasolar planets   总被引:1,自引:0,他引:1  
Following the suggestion of Black that some massive extrasolar planets may be associated with the tail of the distribution of stellar companions, we investigate a scenario in which 5 N 100 planetary mass objects are assumed to form rapidly through a fragmentation process occuring in a disc or protostellar envelope on a scale of 100 au. These are assumed to have formed rapidly enough through gravitational instability or fragmentation that their orbits can undergo dynamical relaxation on a time-scale of ∼100 orbits.
Under a wide range of initial conditions and assumptions, the relaxation process ends with either (i) one potential 'hot Jupiter' plus up to two 'external' companions, i.e. planets orbiting near the outer edge of the initial distribution; (ii) one or two 'external' planets or even none at all; (iii) one planet on an orbit with a semi-major axis of 10 to 100 times smaller than the outer boundary radius of the inital distribution together with an 'external' companion. Most of the other objects are ejected and could contribute to a population of free-floating planets. Apart from the potential 'hot Jupiters', all the bound objects are on orbits with high eccentricity, and also with a range of inclination with respect to the stellar equatorial plane. We found that, apart from the close orbiters, the probability of ending up with a planet orbiting at a given distance from the central star increases with the distance. This is because of the tendency of the relaxation process to lead to collisions with the central star. The scenario we envision here does not impose any upper limit on the mass of the planets. We discuss the application of these results to some of the more massive extrasolar planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号