首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The 2/1 mean motion resonance with Jupiter, intersecting the main asteroid belt at ≈3.27  au, contains a small population of objects. Numerical investigations have classified three groups within this population: asteroids residing on stable orbits (i.e. Zhongguos), those on marginally stable orbits with dynamical lifetimes of the order of 100 Myr (i.e. Griquas), and those on unstable orbits. In this paper, we reexamine the origin, evolution and survivability of objects in the 2/1 population. Using recent asteroid survey data, we have identified 100 new members since the last search, which increases the resonant population to 153. The most interesting new asteroids are those located in the theoretically predicted stable island A, which until now had been thought to be empty. We also investigate whether the population of objects residing on the unstable orbits could be resupplied by material from the edges of the 2/1 resonance by the thermal drag force known as the Yarkovsky effect (and by the YORP effect, which is related to the rotational dynamics). Using N -body simulations, we show that test particles pushed into the 2/1 resonance by the Yarkovsky effect visit the regions occupied by the unstable asteroids. We also find that our test bodies have dynamical lifetimes consistent with the integrated orbits of the unstable population. Using a semi-analytical Monte Carlo model, we compute the steady-state size distribution of magnitude   H < 14  asteroids on unstable orbits within the resonance. Our results provide a good match with the available observational data. Finally, we discuss whether some 2/1 objects may be temporarily captured Jupiter-family comets or near-Earth asteroids.  相似文献   

5.
Non-destructive collisions among Main Belt asteroids have effects on their orbits due to the transmission of linear momentum. The efficiency of this mechanism depends on several parameters which are currently poorly known. The most critical aspects are (i) the inventory and size distribution of small Main Belt asteroids, with sizes well below a few kilometres; (ii) the energy threshold for collisional fragmentation and fragment dispersion and (iii) the efficiency of linear momentum transfer. In spite of these difficulties, a general statistical model of the dynamical effects of non-destructive collisions can be developed, and is presented here. Based on this model, the consequences of different assumptions concerning the asteroid size distribution and collision physics are computed and discussed. Quantitative evaluations of the collisionally induced orbital mobility in different possible scenarios are presented.  相似文献   

6.
The existence of asteroidal meteoroid streams capable of producing meteorite-dropping bolides has long being invoked, but evidence is scarce. Recent modelling of previously reported associations suggests that the time-scales to keep the orbital coherence of these streams producing meteorites are too short. We present an unequivocal association between near earth object (NEO) 2002NY40 and at least one bright fireball detected over Finland in 2006 August. Another two additional fireballs recorded from Spain and Finland seem to be related, together producing a fireball-producing stream (β Aquarids). On the basis of historical data, the 2006 finding suggests the existence of a meteoroid complex capable of producing meteorites. Taking into account present time-scales for orbital decoherence, if 2002NY40 has large meteoroids associated with it, such behaviour would be the consequence of a relatively recent asteroidal fragmentation. Supporting our claim, the heliocentric orbits of two recently discovered NEOs, 2004NL8 and 2002NY40, were found to exhibit a good similarity to each other and also to the orbits of the three bolides. The fireball spectra of the two Finish bolides showed that the chemical abundances of these objects are consistent with the main elements found in chondrites. This result is consistent with the probable Low iron, Low metal (LL) chondritic mineralogy of asteroid 2002NY40. Consequently, this asteroid may be delivering LL chondrites to the Earth. Additional fireball reports found in the literature suggest that the associated β Aquarid complex may have been delivering meteorites to the Earth during, at least, the last millennium.  相似文献   

7.
8.
Using high-resolution, low-scan-rate, all-sky CCD cameras and high-level CCD video cameras, the SPanish Meteor and fireball Network (SPMN) recorded the 2007 κ Cygnid fireball outburst from several observing stations. Here, accurate trajectory, radiant and orbital data obtained for the κ Cygnid meteor are presented. The typical astrometric uncertainty is 1–2 arcmin, while velocity determination errors are of the order of 0.3–0.6 km s−1, though this depends on the distance of each event to the station and its particular viewing geometry. The observed orbital differences among 1993 and 2007 outbursts support the hypothesis that the formation of this meteoroid stream is a consequence of the fragmentation of a comet nucleus. Such disruptive process proceed as a cascade, where the break up of the progenitor body leads to produce small remnants, some fully disintegrate into different clumps of particles and other remaining as dormant objects such as 2008ED69, 2001MG1 and 2004LA12 which are now observed as near-Earth asteroids. In addition to the orbital data, we present a unique spectrum of a bright  κ  Cygnid fireball revealing that the main rocky components have chondritic abundances, and estimations of the tensile strength of those fireballs that exhibited a catastrophic disruption behaviour. All this evidence of the structure and composition of the κ Cygnid meteoroids is consistent with being composed by fine-grained materials typically released from comets.  相似文献   

9.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

10.
11.
Asteroid orbits using phase-space volumes of variation   总被引:2,自引:0,他引:2  
We present a statistical orbit computation technique for asteroids with transitional observational data, that is, a moderate number of data points spanning a moderate observational time interval. With the help of local least-squares solutions in the phase space of the orbital elements, we map the volume of variation as a function of one or more of the elements. We sample the resulting volume using a Monte Carlo technique and, with proper weights for the sample orbital elements, characterize the six-dimensional orbital-element probability density function. The volume-of-variation (VOV) technique complements the statistical ranging technique for asteroids with exiguous observational data (short time intervals and/or small numbers of observations) and the least-squares technique for extensive observational data. We show that, asymptotically, results using the new technique agree closely with those from ranging and least squares. We apply the technique to the near-Earth object 2004 HA39, the main-belt object 2004 QR and the transneptunian object 2002 CX224 recently observed at the Nordic Optical Telescope on La Palma, illustrating the potential of the technique in ephemeris prediction. The VOV technique helps us assess the phase transition in orbital-element probability densities, that is, the non-linear collapse of wide orbital-element distributions to narrow localized ones. For the three objects above, the transition takes place for observational time intervals of the order of 10 h, 5 d and 10 months, respectively, emphasizing the significance of the orbital-arc fraction covered by the observations.  相似文献   

12.
13.
14.
15.
16.
The triple asteroidal system (87) Sylvia is composed of a 280-km primary and two small moonlets named Romulus and Remus ( Marchis et al. 2005b ). Sylvia is located in the main asteroid belt, with semi-major axis of about 3.49 au, eccentricity of 0.08 and 11° of orbital inclination. The satellites are in nearly equatorial circular orbits around the primary, with orbital radius of about 1360 km (Romulus) and 710 km (Remus). In this work, we study the stability of the satellites Romulus and Remus. In order to identify the effects and the contribution of each perturber, we performed numerical simulations considering a set of different systems. The results from the three-body problem, Sylvia–Romulus–Remus, show no significant variation of their orbital elements. However, the inclinations of the satellites present a long-period evolution with amplitude of about 20° when the Sun is included in the system. Such amplitude is amplified to more than 50° when Jupiter is included. These evolutions are very similar for both satellites. An analysis of these results shows that Romulus and Remus are librating in a secular resonance and their longitude of the nodes are locked to each other. Further simulations show that the amplitude of oscillation of the satellites' inclination can reach higher values depending on the initial values of their longitude of pericentre. In those cases, the satellites get caught in an evection resonance with Jupiter, their eccentricities grow and they eventually collide with Sylvia. However, the orbital evolutions of the satellites became completely stable when the oblateness of Sylvia is included in the simulations. The value of Sylvia's J 2 is about 0.17, which is very high. However, even just 0.1 per cent of this value is enough to keep the satellite's orbital elements with no significant variation.  相似文献   

17.
In this work, I conduct a preliminary analysis of the Phocaea family region. I obtain families and clumps in the space of proper elements and proper frequencies, study the taxonomy of the asteroids for which this information is available, analyse the albedo and absolute magnitude distribution of objects in the area, obtain a preliminary estimate of the possible family age, study the cumulative size distribution and collision probabilities of asteroids in the region, the rotation rate distribution and obtain dynamical map of averaged elements and Lyapunov times for grids of objects in the area.
Among my results, I identified the first clump visible only in the frequency domain, the (6246) Komurotoru clump, obtained a higher limit for the possible age of the Phocaea family of 2.2 Byr, identified a class of Phocaea members on Mars-crossing orbits characterized by high Lyapunov times and showed that an apparently stable region on time-scales of 20 Myr near the  ν6  secular resonance is chaotic, possibly because of the overlapping of secular resonances in the region. The Phocaea dynamical group seems to be a real S-type collisional family, formed up to 2.2 Byr ago, whose members with a large semimajor axis have been dynamically eroded by the interaction with the local web of mean-motion and secular resonances. Studying the long-term stability of orbits in the chaotic regions and the stability of family and clumps identified in this work remain challenges for future works.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号