首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Probably the majority of meteor showers has a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers are necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

2.
Probably most meteor showers have a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers is necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

3.
Probably most meteor showers have a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers is necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

4.
Paul Wiegert  Peter Brown 《Icarus》2005,179(1):139-157
The Quadrantids, one of the more active of the annual meteor showers, is unusual for its strong but brief maximum within a broader background of activity. It is also notable for its recent onset, the first observation having been likely made in 1835. Until recently, no parent with a similar orbit had been observed and previous investigators concluded that the stream was quite old, with the stream's recent appearance and sharp peak attributed to a fortuitous convergence of meteoroid orbits. The discovery of the near-Earth Asteroid 2003 EH1 on an orbit very similar to that of the Quadrantids has probably unveiled the parent body of this stream [Jenniskens and Marsden, 2003. 2003 EH1 and the Quadrantids. IAU Circ. 8252]. From simulations of the orbit of this body and of meteoroids released from it at different intervals in the past, we find that both the sharp peak and recent appearance of the Quadrantids can most easily be explained by a release of meteoroids from 2003 EH1 near 1800 AD. This is supported by three lines of evidence. First, the evolution of the observed solar longitude of the Quadrantids over time is consistent with release from 2003 EH1 approximately 200 years ago. Second, numerical simulations of meteoroids released from this parent body at this time match the basic orbital characteristics of the Quadrantid stream well. Finally, these simulations also reveal that the Quadrantid core is well reproduced by a single outburst at perihelion circa 1800, whereas earlier releases result in the shower's appearance in our skies significantly prior to 1835. These results apply to the concentrated central core of the stream: the extended background was likely produced at earlier times. In fact, we find that 2003 EH1 is in a state of Kozai circulation along with a number of other comets and NEAs which may form a larger Quadrantid complex. Using the current total duration of the broader background Quadrantid activity compared to our simulations, we suggest a minimum age of ∼3500 years for the stream as a whole. This also represents the approximate lower limit for the age of the complex. We have further identified five comets as well as nine additional NEAs which may be part of the aforementioned complex, the latter all having Tisserand parameters less than three, further suggesting that the are extinct comet nuclei.  相似文献   

5.
The Quadrantids are one of the most active annual meteor showers and have a number of unusual features. One is a sharp brief maximum, 12–14 h in length. A second is the Quadrantids, relatively recent appearance in our skies, the first observation having likely been made in 1835. Until recently no likely parent with a similar orbit had been observed and previous investigators concluded that the stream was quite old, with the stream’s recent appearance and sharp peak attributed to a recent fortuitous convergence of meteoroid orbits. The recent discovery of the near-Earth asteroid 2003 EH1 on an orbit very similar to that of the Quadrantids has almost certainly uncovered the parent body of this stream. From the simulations of the orbit of this body and of meteoroids released at intervals from it in the past, we find that both the sharp peak and recent appearance of the Quadrantids can most easily be explained assuming meteoroids were ejected in substantial numbers near 1800 AD.  相似文献   

6.
Various points are discussed concerning the association of Earth-crossing asteroids (ECAs) with meteoroid streams, including the drawbacks of the techniques used in some previous work. In comparing the theoretical radiants of any ECA (or, indeed, comet) with observed meteor radiants it is necessary that the orbit used be that appropriate for epochs when the ECA has a node at 1 AU; in each precession cycle of the argument of perihelion () there will be four values rendering a node at the Earth's orbit, so that four showers are expected. Precession of the node will result in sets of showers at different times of year from different-precession cycles, whilst for some objects the orbital evolution is more convoluted. For diffuse, low-flux showers a problem is differentiating the meteors associated with any ECA from the sporadic background; a new graphical technique is introduced for illuminating whether such associations exist. A re-evaluation is required of whether ECAs should be thought of as being parent bodies of specific showers. Although this might be the case for some very large ECAs (such as (3200) Phaethon, associated with the Geminid stream), the bodies observed now being extinct or dormant cometary cores, it is suggested that in general the ECAs are better thought of as being large fragments produced in hierarchical cometary disintegrations. That is, some ECAs are just the largest meteoroids in meteoroid streams.  相似文献   

7.
We investigate the possibility of detectable meteor shower activity in the atmosphere of Venus. We compare the Venus-approaching population of known periodic comets, suspected cometary asteroids and meteor streams with that of the Earth. We find that a similar number of Halley-type comets but a substantially lesser population of Jupiter family comets approach Venus. Parent bodies of prominent meteor showers that might occur at Venus have been determined based on minimum orbital distance. These are: Comets 1P/Halley, parent of the η Aquarid and Orionid streams at the Earth; 45P/Honda-Mrkos-Pajdusakova which currently approaches the venusian orbit to 0.0016 AU; three Halley-type comets (12P/Pons-Brooks, 27P/Crommelin and 122P/de Vico), all intercepting the planet's orbit within a 5-day arc in solar longitude; and Asteroid (3200) Phaethon, parent of the December Geminids at the Earth. In addition, several minor streams and a number of cometary asteroid orbits are found to approach the orbit of Venus sufficiently close to raise the possibility of some activity at that planet. Using an analytical approach described in Adolfsson et al. (Icarus 119 (1996) 144) we show that venusian meteors would be as bright or up to 2 magnitudes brighter than their Earth counterparts and reach maximum luminosity at an altitude range of 100-120, 20-30 km higher than at the Earth, in a predominantly clear region of the atmosphere. We discuss the feasibility of observing venusian showers based on current capabilities and conclude that a downward-looking Venus-orbiting meteor detector would be more suitable for these purposes than Earth-based monitoring. The former would detect a shower of an equivalent Zenithal Hourly Rate of at least several tens of meteors.  相似文献   

8.
Recent theoretical and observational work has shown that the asteroids belonging to the Taurid meteoroid complex have a cometary nature. If so, then they might possess related meteoroid streams producing meteor showers in the Earth atmosphere. We studied the orbital evolution of ten numbered Taurid complex asteroids by the Halphen-Goryachev method. It turned out that all of these asteroids are quadruple crossers relative to the Earth's orbit. Therefore their proposed meteoroid streams may in theory each produce four meteor showers. The theoretical orbital elements and geocentric radiants of these showers are determined and compared with the available observational data. The existence of the predicted forty meteor showers of the ten Taurid complex asteroids is confirmed by a search of the published catalogues of observed meteor shower radiants and orbits, and of the archives of the IAU Meteor Data Center (Lund). The existence of meteor showers associated with the Taurid Complex Asteroids confirms that, most likely, these asteroids are extinct comets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The detailed activity profile of the Sextandids - one of the day-time meteor showers - is poorly known and still unclear. Using the forward-scatter radio technique we have successfully been able to obtain further detailed overall activity profile of the Sextantids for seven consecutive years: 1991–1997. Analysis confirmed the Sextantid activity duration in solar longitude (J2000) of at least 184–193° and the maximum solar longitude at 188.35 ± 0.10° with a full width at half maximum (FWHM) of 2.0 ± 0.2°. Performing the numerical integrations, we also substantiated a possibility of the association between Apollo-type asteroid (3200) Phaethon and the Sextantids. Furthermore, we roughly estimated relative maximum flux rate of Sextantids : Geminids as 1 : 3 amplitude ratio. Depending upon the flux rates and the time lags of the orbital evolution with Phaethon, we conclude that the Sextantids are at a more progressive stage of orbital evolution than the Geminids if both meteor streams are really associated with Phaethon. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The discrete quasitomographic method of the analysis of the interferometric data of meteor radar gives us the possibility of measuring coordinates and velocities of very weak meteor showers with a 2 × 2 square degree resolution on the celestial sphere. The minimal rate of the meteors in each microstream is five meteors per day. At such sensitivity, basic distinctions between irregularities of the sporadic background and meteor streams vanish. More than 1000 of the detected microshowers per month are associated with a combination of (a) the large known meteor showers, (b) the weaker known meteor showers and (c) till now unknown associations of microshowers. All microshowers regardless of association have the identical velocities, limited areas of radiation and near simultaneity of their acting dates. The results are compiled as maps of radiant distribution and average velocities of microstreams for different months. From these it is possible to see how the microshower activity for various discrete sites on the celestial sphere correlate with the behavior of the well-known meteor streams and thus to infer the orbital properties of the different microstream configurations.  相似文献   

11.
We have carried out multi-station TV observations since 1994 in order to determine the orbit of the Arietid daytime meteor stream. In 1999, one possible Arietid meteor was recorded by our simultaneous observations and its orbit was determined. In 2003, two Arietid meteors were observed from two stations of our observing site, those orbits were determined precisely, the orbital elements were in good agreement with each other. This is the first time that determination of the precise orbit of the Arietids has been made from optical observations. The orbit of these Arietid meteors, and comparison with the orbit obtained from radar observations are discussed.  相似文献   

12.
The orbit of asteroid 2003 EH1 is very similar to the mean orbit of the Quadrantid meteoroid stream so that a close relationship between the two is very likely. It has already been suggested that Comet C/1490 Y1 could be the parent of the Quadrantids. If this is the case, then some relationship between the comet and the asteroid might be expected. The orbit of C/1490 Y1 is based on a short observing arc of about 6 weeks and all the observations were with the naked eye, so that its elements are very poorly determined. Hence, forward integration to determine whether asteroid 2003 EH1 represents the re-discovery of the dormant nucleus of C/1490 Y1 is not feasible. Instead we choose to integrate back in time the orbit of 2003 EH1, which is far better determined, and a family of 3500 clones, all of which are moving on an orbit that is consistent with the present known orbit of 2003EH1. We compare the results primarily with the recorded observations of the comet rather than the orbit of the comet derived by Hasegawa. We find that one clone is consistent with these observations.  相似文献   

13.
Jack D. Drummond 《Icarus》1981,45(3):545-553
A reevaluation of the comet/meteor shower and shower/shower associations suggested by Cook (1973, in Evolutionary and Physical Properties of Meteoroids, U.S. Govt. Printing Office, Washington, D.C., NASA SP-319) is made using two orbital discriminant techniques. Twenty-six of his pairings are confirmed, five are rejected, and one new match is found; Comet Ikeya (1964 VIII) is asserted to be the source of the ? Geminids, bringing to sixteen the number of comets which produce meteor showers in Cook's list. No known asteroid shows a convincing relationship to any of the showers.  相似文献   

14.
The dynamical evolution of meteoroid streams associated with cornets Encke, Halley, Machholz 1986 VIII and asteroid Phaethon is discussed. It is shown that the planetary perturbations can greatly increase the streams thickness and each stream may produce several couples of meteor showers active in different seasons of the year. The theoretical and observed data are in a satisfactory accordance.  相似文献   

15.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

16.
This study is motivated by the possibility of determining the large-body meteoroid flux at the orbit of Venus. Towards this end, we attempt to estimate the times at which enhanced meteoric activity might be observed in the planet's atmosphere. While a number of meteoroid streams are identified as satisfying common Earth and Venus intercept conditions, it is not clear from the Earth-observed data if these streams contain large-body meteoroids. A subset of the Taurid Complex objects may produce fireball-rich meteor showers on Venus. A total of 11 short-period, periodic comets and 46 near-Earth asteroids approach the orbit of Venus to within 0.1 au, and these objects may have associated meteoroid streams. Comets 27P/Crommelin and 7P/Pons–Winnecke are identified as candidate parents to possible periodic meteor showers at the orbit of Venus.  相似文献   

17.
The prime measurement objective of the Near Earth Object Chemical Analysis Mission (NEOCAM) is to obtain the ultraviolet spectra of meteors entering the terrestrial atmosphere from ∼125 to 300 nm in meteor showers. All of the spectra will be collected using a slitless ultraviolet spectrometer in Earth orbit. Analysis of these spectra will reveal the degree of chemical diversity in the meteors, as observed in a single meteor shower. Such meteors are traceable to a specific parent body and we know exactly when the meteoroids in a particular shower were released from that parent body (Asher, in: Arlt (ed.) Proc. International Meteor Conference, 2000; Lyytinen and van Flandern, Earth Moon Planets 82–83:149–166, 2000). By observing multiple apparitions of meteor showers we can therefore obtain quasi-stratigraphic information on an individual comet or asteroid. We might also be able to measure systematic effects of chemical weathering in meteoroids from specific parent bodies by looking for correlations in the depletions of the more volatile elements as a function of space exposure (Borovička et al., Icarus 174:15–30, 2005). By observing the relation between meteor entry characteristics (such as the rate of deceleration or breakup) and chemistry we can determine if our meteorite collection is deficient in the most volatile-rich samples. Finally, we can obtain a direct measurement of metal deposition into the terrestrial stratosphere that may act to catalyze atmospheric chemical reactions.  相似文献   

18.
The results of an analysis of the orbital structure of the meteor complex accessible for radar observations at northern midlatitudes are reported. Experimentally, the study is based on the long-term monitoring of the influx of meteor matter into the Earth’s atmosphere performed with the meteor radar of Kazan State University starting from 1986. The study uses a discrete quasi-tomographic method to measure the radiants and velocities of meteor showers based on goniometric data of the meteor radar and diffraction measurements of meteor velocities. The discretization of the detection environment—in particular, in terms of velocity—is shown to result in no substantial loss of measurement accuracy. The error of the measured velocity of the shower does not exceed 1.5 km/s for a standard deviation of a single velocity measurement equal to 3 km/s. Microshower representation is used with microshowers either representing the correlated part of the sporadic complex or being partial streams of major and minor showers, or fragments of the dust environment of minor bodies passing by Earth or falling onto it. The data of measurements made over the entire annual cycle are used to construct combined maps of the distribution of the observed 2263 microshowers (a total of 22 604 orbits) by their inclination, aphelion distance, and longitudes of the ascending nodes of their orbits. The observing conditions are shown to have a significant effect on the parameters of the distribution of aphelion distances for different months, and the corresponding distributions for prograde and retrograde orbits are shown to differ fundamentally. A specific feature of such distribution maps is that they allow uniform representation of both meteor showers and irregularities of the sporadic complex.  相似文献   

19.
The Quadrantid meteor shower is one of the major showers that produces reliable displays every January. However, it is unique amongst the major showers in still not having its parent uniquely identified. One of the reasons for this may be because the stream, and presumably the parent, lies in a region of the Solar system where near-resonant motion with Jupiter, coupled with potential close encounters, is possible. Such a combination can lead to a rapid dynamical evolution of an orbit. In particular, it may be possible that the orbit of the parent both satisfies the condition for a close encounter and is in resonant motion, while most of the meteoroids cannot satisfy both conditions. This results in the parent evolving away from the bulk of the stream.
To date, two suggestions have been made regarding possible parents for the Quadrantid stream, these being Comet 1491 I and Comet 96P/Machholz. The argument in favour of the first named being the parent is because of the general similarity between the orbits around 1491. The argument for comet 96P/Machholz being the parent is based on the similarity in orbital evolution coupled with a similarity in orbits phase-shifted by 2000 yr. In this paper we suggest that on both counts asteroid 5496 (1973 NA) is more similar to the Quadrantids, and that even if 5496 is not the actual parent in the strict sense that meteoroids are currently being ejected, it is either likely to be a fragment of the parent or the dormant remains of the parent.  相似文献   

20.
Jack D. Drummond 《Icarus》1981,47(3):500-517
Sixteen comets produce recognizable meteor showers that are found in A. F. Cook's (1973, In Evolutionary and Physical Properties of Meteoroids (C. L. Hemenway, P. M. Millman, and A. F. Cook, Eds.), pp. 183–191, U.S. Govt. Printing Office, Washington, D.C.), working list of meteor streams. Of these, five are long period, including one in a parabolic and one in a hyperbolic orbit. The largest Earth-comet orbit miss distance is 0.20 AU for P/Encke and the Northern and Southern Taurids. Using this is an upper limit for meteor showers from comets, all comets which approach the Earth's orbit to within 0.20 AU were extracted from the Catalogue of Cometary Orbits (B. G. Marsden, 1979. 3rd ed., Central Bureau of Astronomical Telegrams, IAU SAO, Cambridge, Mass.). A compilation of such comets is presented by date minimum approach, along with the distance of closest approach and the theoretical geocentric radiants and velocities of possible associated meteor showers. Both pre- and postpperihelion encounters with the Earth's orbit are considered. There are 240 entries for 178 long-period comets, and 36 for 28 short-period comets. It is noted that all short-period comets that have approached the Earth's orbit to within 0.08 AU have produced meteors, except P/Lexell, P/Finlay, P/Denning-Fujikawa, and P/Grigg-Skjellerup. Attention is called to the favorable observing conditions for detecting meteors from P/Grigg-Skjellerup in April 1982, and for the possibility of another great Draconid storm from P/Giacobini-Zinner in October 1985. A comparison is made between observed sporadic meteor rates and the distribution of theoretical radiants throughout the year, from which it is concluded that the currently known comets can account for sporadic meteors. A criterion is developed to test whether or not an observed meteor shower can be associated with a given theoretical radiant. Based on known examples, a qualitative model for comet/meteor relationships is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号