首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emplacement of mantle-derived magma (magmatic accretion) isoften presumed or inferred to be an important cause of regionalgranulite facies metamorphism and crustal anatexis. The juxtapositionof mafic cumulates and regionally distributed granulite faciesrocks has led some to consider the Ivrea zone (northern Italy,Southern Alps) as an important exposure that demonstrates thiscausal relationship. However, regional PTt paths indicated bymetamorphic reaction textures and PT conditions inferred fromgeothermobarometry indicate that the emplacement of mafic plutonicrocks (Mafic Complex) at the Ivrea zone occurred during decompressionfrom ambient pressures at the regional thermal maximum. Fieldand petrographic observations, supported by PT estimates, indicatethat regional retrograde decompression and emplacement of theupper parts of the Mafic Complex probably accompanied extensionduring the Late Carboniferous–Early Permian. A spatiallyrestricted decompression-melting event accompanied final emplacement,depleting supracrustal rocks enclosed by an  相似文献   

2.
 The southern Ivrea-Verbano Zone of the Italian Western Alps contains a huge mafic complex that intruded high-grade metamorphic rocks while they were resident in the lower crust. Geologic mapping and chemical variations of the igneous body were used to study the evolution of underplated crust. Slivers of crustal rocks (septa) interlayered with igneous mafic rocks are concentrated in a narrow zone deep in the complex (Paragneiss-bearing Belt) and show evidence of advanced degrees of partial melting. Variations of rare-earth-element patterns and Sr isotope composition of the igneous rocks across the sequence are consistent with increasing crustal contamination approaching the septa. Therefore, the Paragneiss-bearing Belt is considered representative of an “assimilation region” where in-situ interaction between mantle- and crust-derived magmas resulted in production of hybrid melts. Buoyancy caused upwards migration of the hybrid melts that incorporated the last septa and were stored at higher levels, feeding the Upper Mafic Complex. Synmagmatic stretching of the assimilation region facilitated mixing and homogenization of melts. Chemical variations of granitoids extracted from the septa show that deep septa are more depleted than shallow ones. This suggests that the first incorporated septa were denser than the later ones, as required by the high density of the first-injected mafic magmas. It is inferred that density contrasts between mafic melts and crustal rocks play a crucial role for the processes of contamination of continental magmas. In thick under plated crust, the extraction of early felsic/hybrid melts from the lower crust may be required to increase the density of the lower crust and to allow the later mafic magmas to penetrate higher crustal levels. Received: 2 May 1995 / Accepted: 1 November 1995  相似文献   

3.
The Sesia magmatic system of northwest Italy allows direct study of the links between silicic plutonism and volcanism in the upper crust and the coeval interaction of mafic intrusions with the deep crust. In this paper, we focus on the chemical stratigraphy of the pre-intrusion crust, which can be inferred from the compositions of crustal-contaminated mafic plutonic rocks, restitic crustal material incorporated by the complex, and granitic rocks crystallized from anatectic melts. These data sources independently indicate that the crust was compositionally stratified prior to the intrusion of an 8-km-thick gabbroic to dioritic body known as the Mafic Complex, with mica and K-feldspar abundance decreasing with depth and increasing metamorphic grade. Reconsideration of published zircon age data suggest that the igneous evolution initiated with sporadic pulses at around 295 Ma, when mafic sills intruded deep granulites which provided a minor amount of depleted crustal contaminant, very poor in LIL elements. With accelerated rates of the intrusion, between 292 and 286 m.y, mafic magmas invaded significantly more fertile, amphibolite-facies paragneisses, resulting in increased contamination and generating hybrid rocks with distinct chemistry. At this point, increased anatexis produced a large amount of silicic hybrid melts that fed the incremental growth of upper-crustal plutons and volcanic activity, while the disaggregated restite was largely assimilated once ingested by the growing Mafic Complex. This “igneous climax” was coincident with an increasing rate of intrusion, when the upper Mafic Complex began growing according to the “gabbro glacier” model and, at about the same time, volcanic activity initiated. Cooling lasted millions of years. In the coupled magmatic evolution of the deep and upper crust, the Mafic Complex should be considered more as a large reservoir of heat rather than a source of upper-crustal magma, while the fertility of “under/intra-plated” crust plays a crucial role in governing the generation of large volumes of continental silicic magmas.  相似文献   

4.
The Willyama Supergroup of the Broken Hill region in southern Australia consists of supracrustal sedimentary and magmatic rocks, formed between 1810 and 1600 Ma. A statistical analysis of nearly 2000 SHRIMP U–Pb zircon spot ages, compiled from published and unpublished sources, provides evidence for three distinct tectonostratigraphic successions and four magmatic events during this interval. Succession 1 includes Redan Geophysical Zone gneisses and the lower part of the Thackaringa Group (Cues Formation). These rocks were deposited after 1810 Ma and host granite sills of the first magmatic event (1710–1700 Ma). Succession 2 includes the upper Thackaringa Group (Himalaya Formation), the Broken Hill Group and the Sundown Group and was deposited between 1710 and 1660 Ma. These rocks all contain detrital zircons from the first magmatic event (1710–1700 Ma) and in some cases from the second magmatic event (1690–1680 Ma). The second magmatic event (1690–1680 Ma) was bimodal, resulted from crustal extension, and was coeval with deposition of the Broken Hill Group and deepening of the basin. With this event a mafic sill swarm focused in the Broken Hill Domain. Mafic sills lack any trace of inheritance, unlike the granitoids that commonly contain inherited zircons typical of the supracrustal sediments. Succession 3, the Paragon Group and equivalents were deposited after 1660 Ma, but before a regional metamorphic event at 1600 Ma. Metamorphism was closely followed by inversion of the succession into a fold‐and‐thrust belt, accompanied by a fourth late to post‐orogenic magmatic event (ca 1580 Ma) characterised by granite intrusion and regional acid volcanism (the local equivalents of the Gawler Range Volcanics in South Australia).  相似文献   

5.
Gold bearing metavolcanics of Gadag Gold Field (GGF) are represented by mafic (metabasalt, metabasaltic andesite), intermediate (metaandesite) and felsic (metadacite, metarhyolite) rocks. Mafic metavolcanic rocks are low-K Fe-rich tholeiites and were derived by partial melting of the upper mantle sources with high Fe/Mg ratios and low M values. Intermediate and felsic metavolcanics were formed by remelting of these tholeiites mainly in crustal regimes. Although a complete sequence of metavolcanic rocks from mafic to intermediate to felsic fractions occurs, these products were not the result of differentiation from a single magma, crustal contamination was involved in the formation of intermediate and felsic rocks. A clear gap in the chemical composition as well as index of differentiation among the mafic, intermediate and felsic fractions indicate that these metavolcanics constitute a typical bimodal character. It is suggested that these metavolcanics were emplaced in an active continental margin or a continental island arc setting. The petrogenetic processes of formation of Fe-rich tholeiites that evolved in an active continental margin or a continental island arc setting could have provided a favourable geochemical environment for gold mineralisation under the conditions of deformation and metamorphism.  相似文献   

6.
宝坛地区透闪石化镁铁质岩石成因的地质地球化学证据   总被引:7,自引:2,他引:5  
宝坛地区呈岩脉状或岩席状侵入于四堡群变质地层之中的透闪石化镁铁质岩石包括堆积的超镁铁质岩和分异的闪长岩,其岩石类型为透闪石化辉石岩、辉橄岵、辉长岵、辉绿岵及闪长岵等。该镁铁质-闪长质岩石以富集轻稀土和大离子新石元素、亏损高场强元素(Nb、Ta)为特征;除堆积成因的超镁铁质岩石外,透闪石化镁铁质岩石及其分异的闪长岵的MgO为4.45% ̄7.96%,是镁铁质岩浆经结晶分异(辉石、橄榄石)作用的产物。  相似文献   

7.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

8.
Mafic rocks of Western Dharwar Craton (WDC) belong to two greenstone cycles of Sargur Group (3.1–3.3 Ga) and Dharwar Supergroup (2.6–2.8 Ga), belonging to different depositional environments. Proterozoic mafic dyke swarms (2.4, 2.0–2.2 and 1.6 Ga) constitute the third important cycle. Mafic rocks of Sargur Group mainly constitute a komatiitic-tholeiite suite, closely associated with layered basic-ultrabasic complexes. They form linear ultramaficmafic belts, and scattered enclaves associated with orthoquartzite-carbonate-pelite-BIF suite. Since the country rocks of Peninsular Gneiss intrude these rocks and dismember them, stratigraphy of Sargur Group is largely conceptual and its tectonic environment speculative. It is believed that the Sargur tholeiites are not fractionated from komatiites, but might have been generated and evolved from a similar mantle source at shallower depths. The layered basic-ultrabasic complexes are believed to be products of fractionation from tholeiitic parent magma. The Dharwar mafic rocks are essentially a bimodal basalt-rhyolite association that is dominated by Fe-rich and normal tholeiites. Calc-alkaline basalts and andesites are nearly absent, but reference to their presence in literature pertains mainly to carbonated, spilitized and altered tholeiitic suites. Geochemical discrimination diagrams of Dharwar lavas favour island arc settings that include fore-, intra- and back-arcs. The Dharwar mafic rocks are possibly derived by partial melting of a lherzolite mantle source and involved in fractionation of olivine and pyroxene followed by plagioclase. Distinctive differences in the petrography and geochemistry of mafic rocks across regional unconformities between Sargur Group and Dharwar Supergroup provide clinching evidences in favour of distinguishing two greenstone cycles in the craton. This has also negated the earlier preliminary attempts to lump together all mafic volcanics into a single contemporaneous suite, leading to erroneous interpretations. After giving allowances for differences in depositional and tectonic settings, the chemical distinction between Sargur and Dharwar mafic suites throws light on secular variations and crustal evolution. Proterozoic mafic dyke swarms of three major periods (2.4, 2.0–2.2 and 1.6 Ga) occur around Tiptur and Hunsur. The dykes also conform to the regional metamorphic gradient, with greenschist facies in the north and granulite facies in the south, resulting from the tilt of the craton towards north, exposing progressively deeper crustal levels towards the south. The low-grade terrain in the north does not have recognizable swarms, but the Tiptur swarm consists essentially of amphibolites and Hunsur swarm mainly of basic granulites, all of them preserving cross-cutting relations with host rocks, chilled margins and relict igneous textures. There are also younger dolerite dykes scattered throughout the craton that are unaffected by this metamorphic zonation. Large-scale geochemical, geochronological and palaeomagnetic data acquisition through state-of-the-art instrumentation is urgently needed in the Dharwar craton to catch up with contemporary advancements in the classical greenstone terrains of the world.  相似文献   

9.
Charnockitic suites in central Dronning Maud Land (DML), Mac.Robertson Land (MRL), and the Bunger Hills area are compositionally varied and probably include both mantle and lower-crustal components. In this paper we present new geological and geochemical data on the DML charnockitic rocks, and compare their geochemistry with that of charnockitic rocks from several other Antarctic high-grade terranes, particularly MRL and the Bunger Hills. These areas have different geological histories and one of the main aims of this study is to investigate possible links between charnockite composition and the tectonic history of their host terranes. Antarctic charnockitic rocks form two distinct compositional groups. 510 Ma DML charnockites are relatively alkalic and ferroan, with high K2O, Zr, Ga, Fe / Mg, and Ga / Al, and very low MgO, characteristic of A-type (alkaline, commonly anorogenic) granitoids. The more mafic DML rocks, at least, were derived by fractionation of a relatively alkaline high-P–Ti ferrogabbro parent magma. Most other early Palaeozoic charnockitic rocks in Antarctica are of similar composition. In contrast, MRL (c. 980 Ma) and Bunger Hills (c. 1170 Ma) charnockites are mainly calc-alkalic or calcic and magnesian, and the associated mafic components are tholeiitic. MRL and Bunger Hills charnockites are late-orogenic, whereas DML charnockites are post-orogenic, and appear to have been emplaced after post-collision extension and decompression. These two mineralogically and geochemically distinct charnockite groups may thus reflect a compositional trend in an evolving orogen, either accretional or collisional, respectively.  相似文献   

10.
《Precambrian Research》1987,37(4):287-304
Evidence for an extensive Archean crustal history in the Wind River Range is preserved in the Medina Mountain area in the west-central part of the range. The oldest rocks in the area are metasedimentary, mafic, and ultramafic blocks in a migmatite host. The supracrustal rocks of the Medina Mountain area (MMS) are folded into the migmatites, and include semi-pelitic and pelitic gneisses, and mafic rocks of probable volcanic origin. Mafic dikes intrude the older migmatites but not the MMS, suggesting that the MMS are distinctly younger than the supracrustal rocks in the migmatites. The migmatites and the MMS were engulfed by the late Archean granite of the Bridger, Louis Lake, and Bears Ears batholiths, which constitutes the dominant rock of the Wind River Range.Isotopic data available for the area include Nd crustal residence ages from the MMS which indicate that continental crust existed in the area at or before 3.4 Ga, but the age of the older supracrustal sequence is not yet known. The upper age of the MMS is limited by a 2.7 Ga RbSr age of the Bridger batholith, which was emplaced during the waning stages of the last regional metamorphism. The post-tectonic Louis Lake and Bears Ears batholiths have ages of 2.6 and 2.5 Ga, respectively (Stuckless et al., 1985).At least three metamorphic events are recorded in the area: (1) an early regional granulite event (M1) that affected only the older inclusions within the migmatites, (2) a second regional amphibolite event (M2) that locally reached granulite facies conditions, and (3) a restricted, contact granulite facies event (M3) caused by the intrusion of charnockitic melts associated with the late Archean plutons. Results from cation exchange geobarometers and geothermometers yield unreasonablu low pressures and temperatures, suggesting resetting during the long late Archean thermal evenn  相似文献   

11.
The Camaquã Basin, developed during the last phases of the Brazilian/Pan-African Orogeny and was filled with a thick volcano-sedimentary succesion, in which two volcanic events of alkaline affinity are represented by the Acampamento Velho Alloformation and the Rodeio Velho Member. The Acampamento Velho Alloformation records a bimodal event with a lower association of mafic flows and an upper association of felsic pyroclastic rocks and flows. It was formed during extension, after the subduction of the Adamastor oceanic plate beneath the Rio de La Plata continental plate at the end of the Neoproterozoic III. The second event, the Rodeio Velho Member, represented by mafic flows, intrusions and piroclasts, took place during overall extensional tectonism, probably in the middle Ordovician. Rb, Sr, Sm, and Nd isotopic measurements were carried out on samples from both units. Regardless the event they represent, all the samples display negative values for epsilon Nd, ranging from 2.97 to 10.31 for the Acampamento Velho Alloformation and from 8.39 to 13.92 for the Rodeio Velho Member. The initial 87Sr/86Sr ratios vary from 0.706 to 0.707 and from 0.704 to 0.707 for the Acampamento Velho Alloformation and Rodeio Velho Member, respectively. Mafic flow deposits in both units show a preferential enrichment in Ba relative to Th. Flow samples from the Rodeio Velho Member also display a distinctive enrichment in the Ba/Th ratio, without a change in the initial Sr, compared to the mafic flow deposits from the Acampamento Velho Alloformation, which show a slight enrichment in those ratios. As for the Acampamento Velho Alloformation, the mafic lavas could be a mixture of depleted mantle-derived basalts plus 20% to 30% of crustal contamination by sediment (probably Neoproterozoic arkosic quartzites). The formation of a magmatic chamber and the separation of the magma into two fractions gave rise initially to the mafic rocks at the base of the Acampamento Velho Alloformation The other magma fraction underwent a significant enrichment in crustal component before the felsic rocks of this Alloformation were formed. The flows from the Rodeio Velho Member originated in a distinct magma chamber, with EM I characteristics that was much more enriched in incompatible elements and depleted in radiogenic Sr.  相似文献   

12.
The Cuddapah Basin is one of many Proterozoic, intracontinental sedimentary basins across Peninsular India. The basin comprises several unconformity-bounded successions, the lowermost of which (the Papaghni Group and overlying Chitravati Group) are intruded by dolerite sills that contact metamorphosed their host rocks. A mafic-ultramafic sill from the base of the Tadpatri Formation in the Chitravati Group was previously dated at c. 1885 Ma, and interpreted to be part of a large igneous province (LIP). We have dated two samples of a felsic tuff from the upper part of the Tadpatri Formation at 1864 ± 13 Ma and 1858 ± 16 Ma; combining data from the two samples yields a weighted mean date of 1862 ± 9 Ma. Mafic sills intrude rocks stratigraphically above the tuffaceous beds, indicating that mafic magmatism continued until after c. 1860 Ma. Given that the sills intruded lithified rocks, some of the sills may be considerably younger than 1860 Ma. Mafic volcanic rocks are also known from below the unconformity at the base of the Chitravati Group, within the basal Papaghni Group (> c. 1890 Ma). Collectively, these data indicate that mafic sill emplacement spanned more than 30 myr so that it is likely to have been a protracted event or a series of events, and, therefore unlikely to represent a LIP. The time span for mafic magmatism is more compatible with episodic, lithospheric extension (passive rifting) during basin evolution than it is with a mantle plume (active rifting).  相似文献   

13.
The Koshrabad massif, referred to as the Hercynian postcollisional intrusions of the Tien Shan, is composed of two rock series: (1) mafic and quartz monzonites and (2) granites of the main phase. Porphyritic granitoids of the main phase contain ovoids of alkali feldspar, often rimmed with plagioclase. Mafic rocks developed locally in the massif core resulted from the injections of mafic magma into the still unconsolidated rocks of the main phase, which produced hybrid rocks and various dike series. All rocks of the massif are characterized by high f (Fe/(Fe + Mg)) values and contain fayalite, which points to the reducing conditions of their formation. Mafic rocks are the product of fractional crystallization of alkali-basaltic mantle melt, and granitoids of the main phase show signs of crustal-substance contamination. In high f values and HFSE contents the massif rocks are similar to A-type granites. Data on the geochemical evolution of the massif rocks confirm the genetic relationship of the massif gold deposits with magmatic processes and suggest the accumulation of gold in residual acid melts and the rapid formation of ore quartz veins in the same structures that controlled the intrusion of late dikes. The simultaneous intrusion of compositionally different postcollisional granitoids of the North Nuratau Ridge, including the Koshrabad granitoids, is due to the synchronous melting of different crustal protoliths in the zone of transcrustal shear, which was caused by the ascent of the hot asthenospheric matter in the dilatation setting. The resulting circulation of fluids led to the mobilization of ore elements from the crustal rocks and their accumulation in commercial concentrations.  相似文献   

14.
Mafic magmatism is a widespread feature of the Kibaran Orogenic Belt of central Africa, some of which hosts important deposits of Ni and Co. This paper describes mafic intrusions associated with Ni sulphides in northwest Tanzania, and attempts to define the tectonic environment of their emplacement. The Kabanga Ni deposits occur in small, layered mafic-ultramafic intrusions, comprising olivine and orthopyroxene cumulates. These intrusions are spatially associated with widespread gabbro-noritic sills emplaced within the enclosing Meso-proterozoic intracratonic metasedimentary rocks prior to deformation. The marginal rocks of the sulphide-bearing intrusions comprise gabbro-norite and melanorite, similar in texture, lithology and trace element geochemistry to the mafic sills. Marginal rocks of the mineralised intrusions with textures indicative of rapid cooling of largely crystal-free magma (strongly acicular pyroxene and skeletal olivine) are siliceous high Mg basalts, with enriched LREE and negative Sr, P and Ti anomalies, suggesting a metasomatically-enriched mantle source region and/or a strong crustal component. The Kabanga sulphide-bearing intrusions are inferred to have been emplaced as small feeder conduits supplying magma to larger adjacent and overlying gabbro-noritic intrusions within a foreland basin, prior to or during inversion and folding. 2000 Elsevier Science Limited.  相似文献   

15.
江南造山带北缘鄣源构造带主要地质特征   总被引:4,自引:0,他引:4  
鄣源构造带现今呈北东—南西向展布的混杂新元古代早期基性岩块以韧性变形构造为显著特点,并强烈叠加印支—燕山期逆冲-走滑脆性断裂的区域性超壳断裂带.构造带历经多期构造变形,主期构造变形以晋宁期弧-陆(扬子陆块)碰撞在地壳内部层圈结构相对薄弱部位形成的向南逆冲式韧性变形为特征.鄣源构造带中的蚀变枕状—块状基性熔岩、辉长岩、辉绿岩等基性岩块在空间上紧密相伴,形成于低速扩张的陆缘小洋盆扩张脊环境,具初始洋壳基性岩特征,属皖南伏川蛇绿岩西延组成部分.鄣源构造带及其两侧广布的新元古代早期火山-沉积建造体形成于大陆边缘与板块构造体制相关的构造-沉积环境,鄣源构造带南侧为裂解海盆沉积体系,北侧属于与大陆边缘火山弧有关的盆地沉积体系,鄣源构造带内显示深海—半深海沉积特征.鄣源构造带北东、南西向延伸分别与皖南伏川蛇绿混杂岩带及景德镇-宜丰深断裂带相接,是江南造山带北缘以皖南伏川蛇绿岩为代表的新元古代早期陆缘小洋盆俯冲-碰撞拼合带的重要组成部分.  相似文献   

16.
Bernard Barbarin   《Lithos》2005,80(1-4):155-177
The calc-alkaline granitoids of the central Sierra Nevada batholith are associated with abundant mafic rocks. These include both country-rock xenoliths and mafic magmatic enclaves (MME) that commonly have fine-grained and, less commonly, cumulate textures. Scarce composite enclaves consist of either xenoliths enclosed in MME, or of MME enclosed in other MME with different grain size and texture. Enclaves are often enclosed in mafic aggregates and form meter-size polygenic swarms, mostly in the margins of normally zoned plutons. Enclaves may locally divert schlieren layering. Mafic dikes, which also occur in swarms, are undisturbed, composite, or largely hybridized. In central Sierra Nevada, with the exception of xenoliths that completely differ from the other rocks, host granitoids, mafic aggregates, MME, and some composite dikes exhibit a bulk compositional diversity and, at the same time, important mineralogical and geochemical (including isotopic) similarities. MME and host granitoids display distinct major and trace element compositions. However, strong correlations between MME–host granitoid pairs indicate interactions and parallel evolution of MME and enclosing granitoid in each pluton. Identical mafic mineral compositions and isotopic features are the result of these interactions and parallel evolution. Mafic dikes have broadly the same major and trace element compositions as the MME although variations are large between the different dikes that are at distinctly different stages of hybridization and digestion by the host granitoids. The composition of the granitoids and various mafic rocks reflects three distinct stages of hybridization that occurred, respectively, at depth, during ascent and emplacement, and after emplacement. The occurrence and succession of hybridization processes were tightly controlled by the physical properties of the magmas. The sequential thorough or partial mixing and mingling were commonly followed by differentiation and segregation processes. Unusual MME that contain abundant large crystals of hornblende resulted from disruption of early cumulates at depth, whereas those richer in large crystals of biotite were formed by disruption of late mafic aggregates or schlieren layerings at the level of emplacement. MME and host granitoids are considered cogenetic, because both are hybrid rocks that were produced by the mixing of the same two components in different proportions. The felsic component was produced by partial melting of preexisting crustal materials, whereas the dominant mafic component was probably derived from the upper mantle. However, in the lack of a clear mantle signature, the origin of the mafic component remains questionable.  相似文献   

17.
In the southern Brazilian state of Santa Catarina the Dom Feliciano Belt, formed by the tectonic juxtaposition of different crustal blocks during the Brasiliano-Pan African Orogenic cycle, can be divided into three domains. In the central domain, three granitic suites intrude the metavolcanosedimentary sequence of the Brusque Group: São João Batista (SJBS), Valsungana (VS) and Nova Trento (NTS), from the oldest to the youngest. This extensive magmatism, here referred to as granitic intrusions in the Brusqe Group (GIBG), is coeval with the thermal peak in the host metamorphic successions, but postdates its main foliation. A progressive deformation starting from the magmatic stage throughout the cooling history points to the influence of the late stages of deformation recorded in the Brusque Group.The SJBS consists of gray to white leucocratic, equigranular granites, with aluminous minerals such as muscovite, garnet and tourmaline. The porphyritic VS is the largest of the suites and is characterized by its cm-sized K-feldspar megacrysts in a coarse-grained biotite-rich matrix. The granites from the NTS are equigranular, light gray to pink in color and have biotite as the main mafic mineral, but magmatic muscovite, tourmaline and hornblende can occur as well.Geochemically, the GIBG are mildly peraluminous and show a calc-alkaline affinity. Most intrusions have a high REE fractionation, but some SJBS granites show a characteristic pattern with no fractionation and strong negative Eu anomalies (“seagull pattern”). Elevated Sr(i) values, between 0.707 and 0.735, and negative εNd values as low as −24 points to the melting of old evolved crust. The Nd (TDM) ages are scattered between 1.54 and 2.76 Ga, with a predominance of values around 2.0 Ga.The GIBG have a strong crustal signature that most closely connects, within the regional units, to that of the metasedimentary rocks of the Brusque Group and its crystalline basement, the Camboriú Complex. All three suites seem to have been produced during a same regional melting event, but at different crustal levels and reflecting heterogeneities within the same source rocks. Most evidences imply that sedimentary source rocks were especially important to the SJBS, which probably originated in a shallower environment, whilst the VS and NTS represent the melting of deeper crystalline crust, probably sharing some magmatic interaction.  相似文献   

18.
Mafic volcanism of Paleocene age was recently reported in the Valle del Cura region and the El Indio Belt in the aphanitic and very homogenous well-preserved lavas flows of the Río Frío Basalts unit. These are high-K basalts, with high Fe2O3 and TiO2 contents that imply an alkaline tendency and show typical intraplate-type patterns on a MORB normalized trace elements plot. Sr and Nd isotopic ratios evidence a mantle affinity. The chemistry indicates that these rocks are high temperature melts that result from a low degree of melting of an enriched portion of lithospheric mantle, with no contamination from crustal derived components. The alkaline back-arc Las Máquinas Basalts of Lower Miocene age are derived from more primitive magmas closer to the original source. Mantle composition was relatively constant from Paleocene to Lower Miocene in the studied latitudes over the Pampean flat-slab. Both mafic units share the isotopic trend of pre-Miocene mafic lavas from the Central Andes that were not affected by crustal contamination. Post-Miocene mafic lavas show a strong influence from crust-related processes.  相似文献   

19.
The Neoproterozoic Sugetbrak Formation in the Aksu area, which is located at the northwest margin of Tarim Block, comprises mafic rocks and provides key records of the evolution of the Rodinia supercontinent. However, the genetic relationship among these mafic rocks exposed in different geographical sections are still unclear. In this study, the petrology, geochemistry, and Sr-Nd-Pb isotope geochemistry of the mafic rocks exposed in the Aksu-Wushi and Yuermeinark areas have been studied in some ...  相似文献   

20.
辽西早白垩世义县组火山夺的起源及壳幔相互作用   总被引:11,自引:1,他引:11  
对燕山造山带辽西早白垩世义县组火山岩的Nd,Sr,Pb同位素分析,作者认为义县组火山岩起源于岩石圈地幔的部分熔融,岩浆在上侵过程中发生了结晶分异和同化混染作用,即AFC过程。与新生代汉诺坝玄武岩中的中生代镁铁质麻粒岩捕虏体和太古代片麻岩对比研究,发现义县组火山岩与这些镁铁质麻粒岩捕虏体有许多地球化学相似之处,而与长英质麻粒岩捕虏体和太古代各种片麻岩差别较大。作者认为早白垩世燕山板内造山带发生了强烈的岩石圈伸展作用,辽西义县组火山岩和汉坝新生代玄武岩中的镁铁质麻粒岩捕虏体均为这一构造背景下的产物,它们属于幔源岩浆喷发与大规模玄武zh质岩浆底侵作用形成的“同质异相体”。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号